Guo Dafeng, Duan Mingkeng, Xia Minhui, et al. The inconsistency of forecasting in operational numerical prediction products. J Appl Meteor Sci, 2018, 29(3): 321-332. DOI:  10.11898/1001-7313.20180306.
Citation: Guo Dafeng, Duan Mingkeng, Xia Minhui, et al. The inconsistency of forecasting in operational numerical prediction products. J Appl Meteor Sci, 2018, 29(3): 321-332. DOI:  10.11898/1001-7313.20180306.

The Inconsistency of Forecasting in Operational Numerical Prediction Products

DOI: 10.11898/1001-7313.20180306
  • Received Date: 2017-10-17
  • Rev Recd Date: 2018-03-05
  • Publish Date: 2018-05-31
  • The inconsistency of the forecast reflects evolution characteristics with time of the prediction error of continuous multiple prediction at a fixed time in the future. In order to explore the inconsistency of forecasting products in operational numerical forecasting applications, 12 h precipitation and 2 m ground temperature, which are predicted by three numerical models GQEC, T639 and GQJP from November 2015 to October 2016 are analyzed. Quantitative calculation method of Jumpiness index is adopted by considering the sensitivity of the index to the target region.The inconsistency of the numerical model in three different regions is studied by means of statistical analysis and typical case study. Results show that for statistical average, the inconsistency of the numerical models increases with the extension of the forecast time. Long time prediction inconsistency is greater. Jumpiness index of precipitation and temperature is related to the magnitude of the change, and Jumpiness index of precipitation is larger than that of temperature. It also shows that results of two consecutive temperature forecast are more consistent. The temperature prediction ability of the model is better than that of precipitation forecast. The comparison of different numerical models shows that GQEC has obvious advantages in many aspects. Although Jumpiness index of GQJP is less than T639, its jumping frequency is greater, indicating its prediction consistency is inferior to T639. There are seasonal differences in jumping frequency of model products. Both the jump frequency of precipitation and temperature is the highest in summer and the lowest in winter. The inconsistency test of two typical cases of rainstorm and cold air cooling process further corroborates statistical analysis results. Results also show that the forecast inconsistency of the numerical model is not only related to the geographical position, but also to the selected area size. The larger the region is, the smaller Jumpiness index becomes, and vice versa. In addition, the spatial distribution of Jumpiness index in the region is related to geographical location and topography. In general, where elements change bigger, Jumpiness index becomes greater there. The regional distribution of Jumpiness index of different meteorological elements is different. The index value of Jumpiness index of 12 h precipitation forecast increases gradually from north to south in region Ⅰ. While 2 m ground temperature prediction, Jumpiness index from north to south in region Ⅰ gradually decreases.
  • Fig. 1  Selection of target areas

    Fig. 2  Averaged regional distribution of Jumpiness index of 12 h precipitation prediction (a)GQEC, (b)GQJP, (c)T639

    Fig. 3  Jumpiness index of 12 h precipitation prediction with different leading times (a)region Ⅰ, (b)region Ⅱ, (c)region Ⅲ

    (08:00, 20:00 represent initial time, similarly hereinafter)

    Fig. 4  Averaged regional distribution of Jumpiness index of 2 m temperature prediction (a)GQEC, (b)GQJP, (c)T639

    Fig. 5  Jumpiness index of 2 m temperature prediction with different leading times (a)region Ⅰ, (b)region Ⅱ, (c)region Ⅲ

    Fig. 6  Jumping frequency of 12 h precipitation prediction with different leading times (a)region Ⅰ, (b)region Ⅱ, (c)region Ⅲ

    Fig. 7  Jumping frequency of 2 m temperature prediction with different leading times (a)region Ⅰ, (b)region Ⅱ, (c)region Ⅲ

    Table  1  Jumping frequency of 12 h precipitation prediction

    模式 起报时间 区域Ⅰ 区域Ⅱ 区域Ⅲ
    GQEC 08:00 0.478 0.481 0.435
    20:00 0.481 0.480 0.450
    GQJP 08:00 0.627 0.621 0.600
    20:00 0.656 0.622 0.605
    T639 08:00 0.574 0.547 0.494
    20:00 0.563 0.567 0.511
    DownLoad: Download CSV

    Table  2  Jumping frequency of 2 m temperature prediction

    模式 起报时间 区域Ⅰ 区域Ⅱ 区域Ⅲ
    GQEC 08:00 0.421 0.466 0.431
    20:00 0.415 0.462 0.442
    GQJP 08:00 0.635 0.639 0.628
    20:00 0.700 0.651 0.657
    T639 08:00 0.511 0.542 0.509
    20:00 0.549 0.558 0.524
    DownLoad: Download CSV

    Table  3  Averaged jumping frequency of different seasons in region Ⅰ

    季节 起报时间 GQEC GQJP T639
    12 h降水 2 m温度 12 h降水 2 m温度 12 h降水 2 m温度
    春季 08:00 0.502 0.405 0.601 0.590 0.574 0.530
    20:00 0.501 0.410 0.659 0.670 0.604 0.561
    夏季 08:00 0.523 0.484 0.634 0.661 0.613 0.569
    20:00 0.541 0.456 0.656 0.721 0.605 0.572
    秋季 08:00 0.491 0.413 0.616 0.586 0.616 0.530
    20:00 0.487 0.421 0.663 0.693 0.571 0.659
    冬季 08:00 0.478 0.410 0.634 0.631 0.601 0.505
    20:00 0.470 0.392 0.626 0.652 0.569 0.522
    DownLoad: Download CSV

    Table  4  Daily Jumpiness index and jumping frequency of rainstorm process from 15 June to 16 Jun in 2016

    时段 跳跃指数 跳跃频率
    GQEC GQJP T639 GQEC GQJP T639
    14日20:00—15日08:00 0.211 0.099 0.267 0.526 0.714 0.615
    15日08:00—15日20:00 0.179 0.108 0.295 0.526 0.571 0.538
    15日20:00—16日08:00 0.191 0.085 0.293 0.579 0.615 0.714
    DownLoad: Download CSV

    Table  5  Daily Jumpiness index and jumping frequency of strong cold air process from 13 Feb to 15 Feb in 2016

    起报时间 预报时间 跳跃指数 跳跃频率
    GQEC GQJP T639 GQEC GQJP T639
    20:00 预报14日08:00 0.206 0.082 0.110 0.421 0.714 0.692
    08:00 预报14日20:00 0.202 0.165 0.209 0.421 0.714 0.462
    20:00 预报15日08:00 0.250 0.097 0.108 0.368 0.571 0.692
    08:00 预报15日20:00 0.256 0.126 0.211 0.473 0.429 0.386
    DownLoad: Download CSV
  • [1]
    刘梦娟, 陈敏.BJ-RUC系统对北京夏季边界层的预报性能评估.应用气象学报, 2104, 25(2):212-221. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140211&flag=1
    [2]
    邓国, 龚建东, 邓莲堂, 等.国家级区域集合预报系统研发和性能检验.应用气象学报, 2010, 21(5):513-523. doi:  10.11898/1001-7313.20100501
    [3]
    谭桂容, 段浩, 任宏利.中高纬度地区500 hPa高度场动力预测统计订正.应用气象学报, 2012, 23(3):304-311. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120306&flag=1
    [4]
    李博, 赵思雄, 陆汉城, 等.综合多级相似预报技术在暴雨短期预报中的检验.应用气象学报, 2008, 19(3):307-314. doi:  10.11898/1001-7313.20080306
    [5]
    刘建国, 谢正辉, 赵琳娜, 等.基于多模式集合的小时气温概率预报.大气科学, 2013, 37(1):43-53. doi:  10.3878/j.issn.1006-9895.2012.11232
    [6]
    张宏芳, 潘留杰.ECMWF、日本高分辨率模式降水预报能力的对比分析.气象, 2014, 40(4):424-432. doi:  10.7519/j.issn.1000-0526.2014.04.004
    [7]
    陈静, 陈德辉, 颜宏.集合数值预报的发展与研究进展.应用气象学报, 2002, 13(4):497-507. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020465&flag=1
    [8]
    林春泽, 智协飞, 韩艳, 等.基于TIGGE资料的地面气温多模式超级集合预报.应用气象学报, 2009, 20(6):706-712. doi:  10.11898/1001-7313.20090608
    [9]
    况雪源, 刘健, 王红丽, 等.近千年来中国区域降水模拟与重建资料的对比分析.地球科学进展, 2009, 24(2):159-171. http://www.adearth.ac.cn/CN/abstract/abstract913.shtml
    [10]
    Wang Bin, Xie Xin, Li Lijuan.A review on aspects of climatesimulation assessment.Adv Atmos Sci, 2009, 26(4):736-747. doi:  10.1007/s00376-009-9038-y
    [11]
    刘彦华, 张述文, 毛璐, 等.评估两类模式对陆面状态的模拟和估算.地球科学进展, 2013, 28(8):913-922. http://www.cqvip.com/QK/94287X/201308/46811307.html
    [12]
    李佴平, 智协飞.ECMWF模式地面气温预报的四种误差订正方法的比较研究.气象, 2012, 38(8):897-902. doi:  10.7519/j.issn.1000-0526.2012.08.001
    [13]
    陈海山, 孙照渤.陆面模式CLSM的设计及性能检验Ⅱ.模式检验.大气科学, 2005, 29(2):272-282. https://www.wenkuxiazai.com/doc/d0579e48e45c3b3567ec8b3f-2.html
    [14]
    潘留杰, 张宏芳, 朱伟军, 等.ECMWF模式对东北半球气象要素场预报能力的检验.气候与环境研究, 2013, 18(1):112-123. http://www.cnki.com.cn/Article/CJFDTotal-QHYH201301013.htm
    [15]
    陈官军, 魏凤英, 巩远发.NCEP_CFS模式对东亚夏季延伸预报的检验评估.应用气象学报, 2010, 21(6):659-669. doi:  10.11898/1001-7313.20100603
    [16]
    Persson A, Riddaway B.Increasing trust in medium-range weather forecasts.ECMWF Newsletter, 2011, 129:8-12.
    [17]
    Hoffman R, Kalnay E.Lagged average forecasting, an alternative to Monte Carlo forecasting.Tellus, 1983, 35:100-118. doi:  10.3402/tellusa.v35i2.11425
    [18]
    Palmer T N, Tibaldi S.On the prediction of forecast skill.Mon Wea Rev, 1988, 116(12):2453-2480. doi:  10.1175/1520-0493(1988)116<2453:OTPOFS>2.0.CO;2
    [19]
    Roebber P J.Variability in successive operational model forecasts of maritime cyclogenesis.Wea Forecasting, 1990, 5(4):586-595. doi:  10.1175/1520-0434(1990)005<0586:VISOMF>2.0.CO;2
    [20]
    Hamill T M.Evaluating forecasters' rules of thumb:A study of d(prog)/dt.Wea Forecasting, 2003, 18(5):933-937. doi:  10.1175/1520-0434(2003)018<0933:EFROTA>2.0.CO;2
    [21]
    Persson A, Grazzini F.User Guide to ECMWF Forecast Products.Reading, United Kingdom:ECMWF, 2007.
    [22]
    Pappenberger F, Bogner K, Wetterhall F, et al.Forecast convergence score:A forecaster's approach to analyzing hydro-meteorological forecast systems.Adv Geosci, 2011, 29:27-32. doi:  10.5194/adgeo-29-27-2011
    [23]
    Persson A.User Guide to ECMWF Forecast Products.Reading, United Kingdom:ECMWF, 2011:1-127.
    [24]
    Pappenberger F, Cloke H L, Persson A, et al.HESS opinions "on forecast (in) consistency in a hydro-meteorological chain:curse or blessing?".Hydrol Earth Syst Sci, 2011, 15:2391-2400. doi:  10.5194/hess-15-2391-2011
    [25]
    Zsoter E, Buizza R, Richardson D."Jumpiness" of the ECMWF and Met Office EPS control and ensemble-mean forecasts.Mon Wea Rev, 2009, 137(11):3823-3836. doi:  10.1175/2009MWR2960.1
    [26]
    Ehret U.Convergence index:A new performance measure for the temporal stability of operational rainfall forecasts.Meteorologische Zeitschrift, 2010, 19(5):441-451. doi:  10.1127/0941-2948/2010/0480
    [27]
    Lashley S L, Fisher L, Simpson B J, et al.Observing Verification Trends and Applying a Methodology to Probabilistic Precipitation Forecasts at a National Weather Service Forecast Office.Preprints, 19th Conf on Probability and Statistics, New Orleans, LA, Am Meteorol Soc, 2008. http://citeseerx.ist.psu.edu/viewdoc/bookmark?doi=10.1.1.548.3980&site=connotea
    [28]
    郭换换, 智协飞, 段明铿, 等.数值天气预报中的不一致性问题综述.气象科学, 2016, 36(1):134-140. http://www.cqvip.com/QK/96342X/201601/668556328.html
    [29]
    郭换换, 段明铿, 智协飞, 等.基于TIGGE资料的预报跳跃性特征.应用气象学报, 2016, 27(2):220-229. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160210&flag=1
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(5)

    Article views (2964) PDF downloads(225) Cited by()
    • Received : 2017-10-17
    • Accepted : 2018-03-05
    • Published : 2018-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint