Tan Guirong, Fan Yiyuan, Niu Ruoyun. Pattern classification of heavy rainfall in Jianghuai Region and associated circulations. J Appl Meteor Sci, 2018, 29(4): 396-409. DOI:  10.11898/1001-7313.20180402.
Citation: Tan Guirong, Fan Yiyuan, Niu Ruoyun. Pattern classification of heavy rainfall in Jianghuai Region and associated circulations. J Appl Meteor Sci, 2018, 29(4): 396-409. DOI:  10.11898/1001-7313.20180402.

Pattern Classification of Heavy Rainfall in Jianghuai Region and Associated Circulations

DOI: 10.11898/1001-7313.20180402
  • Received Date: 2018-02-02
  • Rev Recd Date: 2018-05-08
  • Publish Date: 2018-07-31
  • Newly reconstructed dataset of regional historical heavy rain events, daily rainfall data of 2474 observational stations in China and NCEP/NCAR reanalysis data during 1981-2016, 1-10 d rainfall products of 2016 from ECMWF and T639 models are used to study heavy rainfall events in Jianghuai Region.Firstly, typical rain patterns are refined by empirical orthogonal function (EOF) based on 72 heavy rainfall cases. And then the classification of the regional heavy rainfall patterns for all heavy rainfall cases is done objectively through taking corresponding circulation patterns of basic rain patterns as targets with an analogue method.Furthermore, circulation characteristics of heavy rainfall patterns in Jianghuai Region are investigated. From the prophase of heavy rainfall at 500 hPa height fields, for Type Q there is an enhancing large low vortex and it splits into two centers forming a circulation type of two troughs and one ridge, with marked anomalies but small amplitudes at low latitudes near Jianghuai Region. Both Type Q and Type Q is dominated by meridional circulation, but Type Q is dominated by negative anomalies over mid-high latitudes of Asian, and then gradually one trough and one ridge develop, with the western Pacific subtropical high(WPSH) extending further westward at low latitudes. Type Q is dominated by two ridges and one trough forms at mid-latitudes, with the WPSH weaker and unremarkable. However, synoptic systems of all three patterns move slowly, and Jianghuai Region is under the control of a relatively low system by the northwest side of WPSH, which is prevail to the heavy rainfall over this region. The jet stream locates to the north of Jianghuai Region with an anomalous divergence over the region at 200 hPa, but the strength of the jet stream is different for different patterns.Finally, the relationship between circulation patterns and related heavy rain are investigated. The circulation fields are estimated using height field analogue method with different leading time from 10 d to 0, and correlation coefficients between these parameters and the observation are considerable high, such as the height of 500 hPa, meridional wind component at 850 hPa, relative humidity at 700 hPa, and zonal wind at 200 hPa. Threat scores (TS) of the rainfall for days with daily rainfall more than 25 mm and 50 mm are also checked. TS in independent experiments of different lead time from 1 d to 10 d are higher than those from ECMWF and T639 models for events with daily rainfall more than 25 mm.
  • Fig. 1  Three lead EOF modes of heavy rainfall in Jianghuai Region

    Fig. 2  Composite rainfall of typical mode patterns from EOF time coefficient in Jianghuai Region

    Fig. 3  Frame of pattern classification for heavy rainfall in Jianghuai Region

    Fig. 4  Composite heavy rainfall patterns in Jianghuai Region

    Fig. 5  Composite heights at 500 hPa of heavy rainfall Q(the contour, unit:gpm)

    (the shaded denotes height anomaly, the dotted denotes passing the test of 0.1 level)

    Fig. 6  Composite zonal wind and divergence anomaly at 200 hPa of heavy rainfall Q

    (the arrow denotes the mean zonal wind more than 30 m·s-1, the shaded denotes divergence anomaly)

    Fig. 7  Composite heights at 500 hPa of heavy rainfall Q(the contour, unit:gpm)

    (the shaded denotes height anomaly, the dotted denotes passing the test of 0.1 level)

    Fig. 8  Composite mean zonal wind and divergence anomaly at 200 hPa of heavy rainfall Q

    (the arrow denotes the mean zonal wind more than 30 m·s-1, the shaded denotes divergence anomaly)

    Fig. 9  Composite heights at 500 hPa of heavy rainfall Q(the contour, unit:gpm)

    (the shaded denotes height anomaly, the dotted denotes passing the test of 0.1 level)

    Fig. 10  Composite mean zonal wind and divergence anomaly at 200 hPa of heavy rainfall Q

    (the arrow denotes the mean zonal wind more than 30 m·s-1, the shaded denotes divergence anomaly)

    Fig. 11  Correlation coefficients between calculated and in-situ circulations of heavy rainfall patterns of Q, Q, Q

    Fig. 12  Threat score of the predicted heavy rainfall from Jun to Aug in 2016 for days with daily rainfall lager than 25 mm and 50 mm

  • [1]
    王同美, 吴国雄, 万日军.青藏高原的热力和动力作用对亚洲季风区环流的影响.高原气象, 2008, 27(1):1-9. http://www.cnki.com.cn/Article/CJFDTotal-RDQX2009S1011.htm
    [2]
    陶诗言.中国之暴雨.北京:科学出版社, 1980.
    [3]
    丁一汇.1991年江淮流域持续性特大暴雨研究.北京:气象出版社, 1993.
    [4]
    谭桂容, 孙照渤, 朱艳峰.江淮地区夏季降水与西北太平洋海温关系的诊断分析和数值试验.南京气象学院学报, 2007, 30(4):472-478. http://www.cnki.com.cn/Article/CJFDTotal-QXXB504.006.htm
    [5]
    陈丽娟, 顾伟宗, 伯忠凯, 等.黄淮地区夏季降水的统计降尺度预测.应用气象学报, 2017, 28(2):129-141. doi:  10.11898/1001-7313.20170201
    [6]
    Li L, Zhai P M, Chen Y, et al.Low-Frequency oscillations of the east Asia-Pacific teleconnection pattern and their impacts on persistent heavy precipitation in the Yangtze-Huai River Valley.J Meteor Res, 2016, 30(4):459-471. doi:  10.1007/s13351-016-6024-z
    [7]
    谭桂容, 王一舒.中高纬度与热带大气的共同作用对江南4-6月低频降水的影响.气象学报, 2016, 74(3):335-351. doi:  10.11676/qxxb2016.032
    [8]
    张玉洁, 刘寿东, 任宏利, 等.中国南方夏季低频雨型特征及其年代际变化研究.气象学报, 2014, 72(6):1205-1217. doi:  10.11676/qxxb2014.075
    [9]
    康志明, 鲍媛媛, 周宁芳.我国中期和延伸期预报业务现状以及发展趋势.气象科技进展, 2013, 3(1):18-24. http://www.cnki.com.cn/Article/CJFDTotal-XJQX201002003.htm
    [10]
    吴曼丽, 陆忠艳, 王瀛.中期延伸天气预报方法研究.气象与环境学报, 2007, 23(2):6-10. http://www.oalib.com/paper/5063392
    [11]
    沈学顺, 苏勇, 胡江林, 等.GRAPES_GFS全球中期预报系统的研发和业务化.应用气象学报, 2017, 28(1):1-10. doi:  10.11898/1001-7313.20170101
    [12]
    Changnon S A, Roger A, Pielke J, et al.Human factors explain the increased losses from weather and climate extremes.Bull Amer Meteor Soc, 2000, 81(3):437-442. doi:  10.1175/1520-0477(2000)081<0437:HFETIL>2.3.CO;2
    [13]
    刘小宁.我国暴雨极端事件的气候变化特征.灾害学, 1999, 14(1):54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200703005.htm
    [14]
    翟盘茂, 王萃萃, 李威.极端降水事件变化的观测研究.气候变化研究展, 2007, 3(3):144-148. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200703005.htm
    [15]
    王志福, 钱永甫.中国极端降水事件的频数和强度特征.水科学进展, 2009, 20(1):1-9. http://kns.cnki.net/kcms/detail/detail.aspx?filename=SKXJ200901001&dbcode=CJFQ&dbname=CJFD2009&v=
    [16]
    任国玉, 吴虹, 陈正洪.我国降水变化趋势的空间特征.应用气象学报, 2000, 11(3):322-330. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000348&flag=1
    [17]
    Easterling D R, Events J L, Groismman P Y, et al.Observed variability and trends in extreme climate events:A brief review.Bull Amer Meteor Soc, 2000, 81(3):417-425. doi:  10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2
    [18]
    Sun J, Zhao S.The impacts of multi-scale weather systems on freezing rain and snow storms over the southern China.Wea Forecasting, 2010, 25:388-407. doi:  10.1175/2009WAF2222253.1
    [19]
    Wang W C, Gong W, Wei H.A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai River valley.Part Ⅰ:Precipitation and circulation statistics.J Climate, 2000, 13(1):93-108. doi:  10.1175/1520-0442(2000)013<0093:ARMSOT>2.0.CO;2
    [20]
    Chen Y, Zhai P M.Persistent extreme precipitation events in China during 1951-2010.Climate Res, 2013, 57(2):143-155. doi:  10.3354/cr01171
    [21]
    Bonsal B R, Zhang X B, Vincent L A, et al.Characteristics of daily and extreme temperature over Canada.J Climate, 2001, 5(14):1959-1976. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg41/ref41&dbid=16&doi=10.1139%2Fer-2013-0042&key=10.1175%2F1520-0442(2001)014<1959%3ACODAET>2.0.CO%3B2
    [22]
    Zhou B Q, Zhai P M.A new forecast model based on the analog method for persistent extreme precipitation.Amer Meteor Soc, 2016, 31(4):1325-1341. http://adsabs.harvard.edu/abs/2016WtFor..31.1325Z
    [23]
    Qian J H, Tao W K, Lau K M.Mechanisms for torrential rain associated with the Mei-yu development during SCSMEX 1998.Mon Wea Rev, 2004, 132(1):3-27. doi:  10.1175/1520-0493(2004)132<0003:MFTRAW>2.0.CO;2
    [24]
    甘晶晶, 汤燕冰.江淮流域持续性暴雨过程的中期信号初析.浙江大学学报(理学版), 2009, 36(4):477-486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb200904025
    [25]
    Samel A N, Liang X Z.Understanding relationship between the 1998 Yangtze River flood and northeast Eurasian blocking.Climate Res, 2003, 23:149-158. doi:  10.3354/cr023149
    [26]
    Qian W H, Li J, Shan X L.Application of synoptic-scale anomalous winds predicted by medium-range weather forecast models on the regional heavy rainfall in China in 2010.Science China(Earth Sciences), 2013, 56(6):1059-1070. doi:  10.1007/s11430-013-4586-5
    [27]
    Niu R Y, Zhai P M.Synoptic verification of medium-extended-range forecasts of the northwest Pacific Subtropical High and South Asian High based on multi-center TIGGE data.Acta Meteor Sinica, 2013, 27(5):725-741. doi:  10.1007/s13351-013-0513-0
    [28]
    Niu R Y, Zhai P M, Zhou B Q.Evaluation of forecast performance of Asian summer monsoon low-level winds using the TIGGE dataset.Wea Forecasting, 2015, 30(2):455-470. doi:  10.1175/WAF-D-13-00141.1
    [29]
    陆尔, 丁一汇.1991年江淮持续性特大暴雨的夏季风活动分析.应用气象学报, 1997, 8(3):316-324. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970345&flag=1
    [30]
    牛若芸, 张志刚, 金荣花.2010年我国南方两次持续性强降水的环流特征.应用气象学报, 2012, 23(4):385-394. doi:  10.11898/1001-7313.20120401
    [31]
    薛秋芳, 任传森, 陶诗言.1998年长江流域洪涝的成因分析.应用气象学报, 2001, 12(2):246-250. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010233&flag=1
    [32]
    马岚, 吴晓京, 江吉喜, 等.2001年夏季风活动与我国南方暴雨某些特征的分析.应用气象学报, 2003, 14(4):445-451. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030455&flag=1
    [33]
    毕宝贵, 矫梅燕, 廖要明, 等.2003年淮河流域大洪水的雨情、水情特征分析.应用气象学报, 2004, 15(6):681-687. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040683&flag=1
    [34]
    牛若芸, 刘凑华, 刘为一, 等.中国95°E以东区域性暴雨过程时空分布统计特征(1981-2015).气象学报, 2018, 76(2):182-192. doi:  10.11676/qxxb2017.092
    [35]
    施能.气象科研与预报中的多元分析方法(第二版).北京:气象出版社, 2002:174-176.
    [36]
    冯志刚, 程兴无, 陈星, 等.淮河流域暴雨强降水的环流分型和气候特征.热带气象学报, 2013, 29(5):824-832. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200901009.htm
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (4021) PDF downloads(348) Cited by()
    • Received : 2018-02-02
    • Accepted : 2018-05-08
    • Published : 2018-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint