Zheng Xiangdong, Xuan Yuejian, Lin Weili, et al. Performance tests and outdoor comparison observations of domestic remade ECC ozonesondes. J Appl Meteor Sci, 2018, 29(4): 460-473. DOI:  10.11898/1001-7313.20180407.
Citation: Zheng Xiangdong, Xuan Yuejian, Lin Weili, et al. Performance tests and outdoor comparison observations of domestic remade ECC ozonesondes. J Appl Meteor Sci, 2018, 29(4): 460-473. DOI:  10.11898/1001-7313.20180407.

Performance Tests and Outdoor Comparison Observations of Domestic Remade ECC Ozonesondes

DOI: 10.11898/1001-7313.20180407
  • Received Date: 2017-10-13
  • Rev Recd Date: 2018-03-09
  • Publish Date: 2018-07-31
  • The electrochemical concentration cell (ECC) type ozone sonde, developed by Institute of Atmospheric Physics(IAP), Chinese Academy of Sciences(CAS) is tested through indoor basic examinations and outdoor flying comparison observations with imported ECC ozonesondes. Indoor tests for IAP ozone sonde include the sonde background current (Ibg), the response time and the influences of SO2 and NO2 on ozone measurements, and the low pressure pump efficiency (Cef). Results show that Ibg is less than 0.1 μA and it decreases with the growth of altitude. The response time is 21-26 s. Ozone concentration is much underestimated/overestimated as SO2/NO2 gas is input to the ozone sonde. Cef is about 1.0 as the atmospheric pressure is more than 100 hPa while it rises with the decrease of atmospheric pressure, reaching 1.17 ±0.10-1.28 ±0.16 as the pressure is 10 to 5 hPa. Cef of IAP ozonesonde is higher than that of imported products with the value of about 1.055. Outdoor comparison observation shows that IAP and imported ozonesonde have good compatibility in the radiosonde platform and sampling pumps. The ozone vertical profiles from each sonde show generally consistent with each other. The ratio of total ozone measured by IAP ozonesonde to that from Brewer observations is 0.9-1.1. Ozone concentration difference is effectively reduced in the lower stratosphere when Cef and Ibg of IAP ozonesonde is used. Applications of Cef and Ibg of IAP ozonesonde contributed to 15 DU and 4-6 DU column ozone. The mean absolute difference of tropospheric ozone partial pressure are stable and its values are less than 0.5 mPa, and the stratospheric difference doesn't exceed 1.0 mPa, although the impact from the pump on IAP ozonesonde is obvious. An international low-pressure environment simulation cabin comparison test is necessary for IAP ozonesonde. The stability of Cef of this radiosonde system should be improved, and it suggests that filtering algorism should be added to data depressing (including meteorology and ozone processing) to decrease data oscillations.
  • Fig. 1  Variations of IAP and ENSCI-2Z ECC ozonesonde Ibg with the atmospheric pressure

    Fig. 2  Influences of NO2(a) and SO2(b) on measurements of IAP ozonesonde

    Fig. 3  Cef of IAP ozonesondes(a)individual case, (b)statistical results of multiple measurements, (c)comparison with those of imported ozonesondes

    (data of Harder1987 and Deshler are from reference [6])

    Fig. 4  Comparisons of ozone concentration measured by IAP ozonesonde and TE49i

    Fig. 5  Measurements of IAP and imported ozonesonde operated by same type of imported pumps (the left is ozone partial pressure profile, the right is absolute difference profile) (a)on 26 Mar 2013, (b)on 2 Apr 2013, (c)on 23 Apr 2013

    Fig. 6  Measurements of IAP and imported ozonesonde operated by same type of RS92 radiosonde platform (the left is ozone partial pressure profile, the right is absolute difference profile) (a)on 13 Mar 2013, (b)on 14 Mar 2013, (c)on 15 Mar 2013

    Fig. 7  Measurements of domestic and imported ozonesonde operated by completely different pumps and radiosonde platform(the left are the ozone partial pressure profiles, the right is absolute difference profiles) (a)on 15 Jan 2013, (b)on 22 Jan 2013

    Table  1  Response time(τ) of IAP and ENSCI-2Z ECC ozonesondes(unit:s)

    O3浓度/10-9 浓度增大方向 浓度减小方向
    IAP#1 IAP#2 ENSCI-2Z IAP#1 IAP#2 ENSCI-2Z
    200 25.7 27.7 34.1 21.2 21.1 20.0
    150 23.3 24.0 26.2 20.9 21.3 20.0
    100 23.1 24.5 26.1 20.3 21.4 19.6
    50 23.2 23.8 29.9 21.2 20.3 20.9
    15 25.3 27.3 43.7 21.0 21.4 20.7
    平均 24.1 25.5 32.0 20.9 21.1 20.3
    DownLoad: Download CSV

    Table  2  Comparison observations of IAP and ENSCI-2Z/SPC-6A ozonesondes in Beijing in 2013

    日期 O3探空仪类型 气象探空平台 探空积分总量/DU Brewer/DU 备注
    原始数据 Cef订正 CefIbg订正
    2013-01-15 IAP 国产 321 327±10 331 317
    ENSCI-2Z RS92 317
    2013-01-22 IAP 国产 376 391±15 395 388 相同保温盒
    ENSCI-2Z RS92 371
    2013-03-11 IAP RS92 302 312±10 332
    ENSCI-2Z 332
    2013-03-13 IAP RS92 326 340±13 336
    SPC-6A 337
    2013-03-14 IAP RS92 318 333±13 343
    SPC-6A 330
    2013-03-15 IAP RS92 272 284±11 311
    SPC-6A 311
    2013-03-18 IAP RS92 382 397±15 429 0.5%KI溶液
    ENSCI 431
    2013-03-26 IAP 国产 346 351±1.8 352 350 ENSCI-2Z泵
    ENSCI-2Z 国产 338 353±1.8 356
    2013-04-02 IAP 国产 267 270±1.3 271 315 ENSCI-2Z泵
    ENSCI-2z 国产 273 276±1.3 278
    2014-04-23 IAP#1 国产 392 399±2.7 402 402 ENSCI-2Z泵
    IAP#2 国产 10 km无信号
    SPC-6A RS92 398
    注:①图 3b所示Cef值订正O3廓线,②由于Vaisala92原始数据未提供化学反应池电流值,该积分总量已含Ibg订正,③图 3b所示Cef值和SPC-6A探空Ibg处理方式订正O3廓线,④图 3c中ENSCI-2Z的Cef值订正O3廓线。
    DownLoad: Download CSV

    Table  3  The ozone partial pressure absolute difference measured by IAP and imported ozonesondes under various situations(unit:mPa)

    高度范围 比对类型 原始廓线 Cef订正 Ibg订正 CefIbg共同订正
    地面~2 km Ⅰ(n=2) -0.08±0.25 -0.08±0.25 -0.07±0.25 -0.07±0.25
    Ⅱ(n=1) -0.57±0.33 -0.57±0.33 -0.56±0.32 -0.56±0.32
    Ⅲ(n=5) 0.14±0.51 0.14±0.51
    Ⅳ(n=2) 0.51±1.25 0.50±1.25 0.54±1.24 0.53±1.24
    2.1~10 km -0.3±0.14 -0.3±0.14 -0.27±0.14 -0.26±0.14
    -0.4±0.21 -0.4±0.21 -0.38±0.21 -0.37±0.21
    -0.04±0.27 -0.08±0.27
    0.05±0.32 0.02±0.32 0.15±0.32 0.12±0.32
    10.1~25 km -0.49±0.55 -0.37±0.49 0.45±0.55 -0.3±0.49
    -0.10±0.40 0.27±0.5 0.14±0.4 0.31±0.50
    -0.57±0.33 -0.57±0.33
    0.35±0.58 0.65±0.57 0.46±0.58 0.76±0.57
    25 km以上 0.13±0.67 0.48±0.74 0.17±0.68 0.52±0.74
    -0.37±1.16 0.03±1.22 -0.33±1.17 0.07±1.23
    -1.18±0.80 -0.24±0.86
    -0.61±0.48 0.56±0.48 -0.49±0.48 0.58±0.48
    廓线平均 -0.32±0.54 -0.21±0.54 -0.17±0.54 0.17±0.54
    -0.19±0.71 -0.01±0.77 -0.15±0.71 0.28±0.78
    -0.68±0.81 -0.34±0.69
    0.14±0.68 0.43±0.64 0.24±0.67 0.54±0.64
    注:Ⅰ表示抽气泵和气象探空相同(2013年3月26日和4月2日),Ⅱ表示相同抽气泵和不同气象探空(2013年4月23日),Ⅲ表示相同气象探空平台(2013年3月11—18日),Ⅳ表示不同系统(2013年1月15日和22日)。
    DownLoad: Download CSV
  • [1]
    Komhyr W D.Electrochemical concentration cells for gas analysis.Ann Geophys, 1969, 25:203-210. http://cn.bing.com/academic/profile?id=d2fa0a38afd25125ae61972cad5ba4e2&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    Smit H G J, Kley D. Julich Ozone Sonde Inter-comparison Experiment-1996(JOSIE-1996). Global Atmosphere Watch Report Series, 1998, No. 130. WMO/TD-No. 926. Geneva: WMO, 38-44.
    [3]
    StÜbi R, Levrat G, Hoegger B, et al.In-flight comparison of Brewer-Mast and electrochemical concentration cell ozonesondes.J Geophys Res, 2008, 113, D13302, DOI: 10.1029/2007JD009091.
    [4]
    孔琴心, 王庚辰, 刘广仁, 等.大气O3垂直分布的电化学测量.大气科学, 1992, 16(5):636-640.
    [5]
    王庚辰, 孔琴心, 宣越健, 等.GPS O3和Vaisala臭氧探空仪平行施放比对结果的初步分析.应用气象学报, 2004, 15(6):672-680. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040682&flag=1
    [6]
    郑向东, 李伟.国产臭氧探空仪观测数据质量分析.应用气象学报, 2005, 16(5):608-618. doi:  10.11898/1001-7313.20050507
    [7]
    李伟, 赵培涛, 郭启云, 等.国产GPS探空仪国际比对试验结果.应用气象学报, 2011, 22(4):453-462. doi:  10.11898/1001-7313.20110408
    [8]
    颜晓露, 郑向东, 李蔚, 等.两种探空仪观测湿度垂直分布及其应用比较.应用气象学报, 2012, 23(4):433-440. doi:  10.11898/1001-7313.20120406
    [9]
    姚雯, 马颖, 高丽娜.L波段与59-701探空系统相对湿度对比分析.应用气象学报, 2017, 28(2):218-226. doi:  10.11898/1001-7313.20170209
    [10]
    姚雯, 马颖, 王战, 等.用数值预报场间接对比新疆两种型号探空系统.应用气象学报, 2012, 23(2):159-166. doi:  10.11898/1001-7313.20120204
    [11]
    Zhang J Q, Xuan Y J, Yan X L, et al.Development and preliminary evaluation of a double-cell ozonesonde.Advances of Atmospheric Science, 2014, 31(4):938-947. doi:  10.1007/s00376-013-3104-1
    [12]
    郑向东, 汤洁, 周秀骥, 等.拉萨地区1998年夏季臭氧总量及垂直廓线的观测研究.应用气象学报, 2000, 11(2):173-179. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000226&flag=1
    [13]
    郑向东, 丁国安, 孙敏锋, 等.北京冬季低层大气O3垂直分布观测结果的研究.应用气象学报, 2002, 13(增刊Ⅰ):100-108. http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract15025.shtml
    [14]
    Johnson B J, Oltmans S J, Vömel H, et al.Electrochemical concentration cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions.Journal of Geophysical Research:Atmospheres, 2002, 107(D19):ACH 8-1-ACH 8-18. http://cn.bing.com/academic/profile?id=7cc6df637afc93673e5e6e861e22b115&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    Reid S J, Vaughan G, Marsh A R W, et al.Accuracy of ozonesonde measurements in the troposphere.J Atmos Chem, 1996:25:215-226. doi:  10.1007/BF00053792
    [16]
    Thornton D C, Niazy N.Sources of background current in the ECC-ozonesonde:Implication for total ozone measurements.J Geophys Res, 1982, 87:8943-8950. doi:  10.1029/JC087iC11p08943
    [17]
    Komhyr W D, Barnes R A, Brothers G B, et al.Electrochemical concentration cellozonesonde performance evaluation during STOIC 1989.J Geophys Res, 1995, 100:9231-9244. doi:  10.1029/94JD02175
    [18]
    Vömel H, Diaz K.Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere.Atmospheric Measurement Techniques, 2010, 3(2):495-505, DOI: 10.5194/amt-3-495-2010.
    [19]
    田宏民. 国产电化学反应池型O3探空仪性能测试研究. 成都: 成都信息工程大学, 2014: 17-18. http://cdmd.cnki.com.cn/Article/CDMD-10621-1015401703.htm
    [20]
    Schenkel A, Broder B.Inteference of some trace gases with ozone measurements by the KI method.Atmospheric Environemnt, 1982, 16(19):2187-2190. http://adsabs.harvard.edu/abs/1982AtmEn..16.2187S
    [21]
    Morris G A, Labow G, Akimoto H, et al.On the use of the correction factor with Japanese ozonesonde data, Atmospheric.Atmos Chem Phys, 2013, 13:1243-1260. doi:  10.5194/acp-13-1243-2013
    [22]
    2014年北京市环境状况公报. 北京市环保局, 2015.
    [23]
    Lin Weili, Xu Xiaobin, Ma Zhiqaing, et al.Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China:Effectiveness of control measures.Journal of Environmental Sciences, 2012, 24(1):34-49. doi:  10.1016/S1001-0742(11)60727-4
    [24]
    田宏民, 郑向东, 汤洁, 等.大气低压模拟舱研制与初步应用.气象科技, 2015, 43(1):30-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201501005
    [25]
    郑向东, 丁国安, 于海青, 等.十三陵"清洁区"秋季O3在地面及近地边界层垂直分布变化的探测研究.中国科学(地球科学), 2005, 48(增刊Ⅰ):55-63. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk2005s1004&dbname=CJFD&dbcode=CJFQ
    [26]
    Smit H G J, Wolfgang S. JOSIE-1998 Performance of the ECC Ozone Sondes of SPC-6A and ENSCI-Z Type. Global Atmosphere Watch Report Series, No. 157. WMO/TD-No. 1218. Geneva: WMO, 2004.
    [27]
    Smit H G J, Wolfgang S. JOSIE-2000, The 2000 WMO International Intercomparison of Operating Procedures for ECC-Ozone Sondes at the Environmental Simulation Facility at Jülich. Global Atmosphere Watch Report Series, No. 158, WMO/TD2 No. 1225. Geneva: WMO, 2004.
    [28]
    SPARC-IOC-GAW Assessment of Trends in the Vertical Distribution of Ozone. SPARC report No. 1, WMO Global Ozone Research and Monitoring Project Report No. 43. Geneva: WMO, 1998.
    [29]
    Tatsumi Nakano, Keisuke Ueno. Development of Automatic Pump Efficiency Measurement System for ozone sonde. Quadrennial Ozone Symposium, Toronto, Canada, 2012.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(3)

    Article views (3035) PDF downloads(173) Cited by()
    • Received : 2017-10-13
    • Accepted : 2018-03-09
    • Published : 2018-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint