Su Zhiguo, Lü Weitao, Chen Lüwen, et al. Simulation of structure height influences on electromagnetic field of lightning return stroke. J Appl Meteor Sci, 2018, 29(4): 487-495. DOI:  10.11898/1001-7313.20180409.
Citation: Su Zhiguo, Lü Weitao, Chen Lüwen, et al. Simulation of structure height influences on electromagnetic field of lightning return stroke. J Appl Meteor Sci, 2018, 29(4): 487-495. DOI:  10.11898/1001-7313.20180409.

Simulation of Structure Height Influences on Electromagnetic Field of Lightning Return Stroke

DOI: 10.11898/1001-7313.20180409
  • Received Date: 2018-03-05
  • Rev Recd Date: 2018-05-21
  • Publish Date: 2018-07-31
  • With the development of economy and society and the continuous acceleration of urbanization, there are more and more tall-objects in urban area. Tall-objects can attract nearby downward lightning and trigger upward lightning. When a thunderstorm occurs, tall-object may be struck multiple times, which lead to a severe lightning electromagnetic environment in the vicinity. Therefore, the study of lightning striking to tall-object is of significance to the lightning protection of nearby equipment and cables.An electromagnetic model of lightning striking to tall-object is developed based on the three-dimensional finite-difference time-domain (FDTD) numerical method. Using FDTD method, the propagation law of lightning vertical electric field, the azimuthal magnetic field and the horizontal electric field along the ground surface, produced by negative cloud-to-ground lightning flash to tall-object, is investigated considering cases of different heights (100-600 m) of tall-objects.The amplitude of lightning short-circuit current waveform is 11 kA, and the corresponding 10%-to-90% rise-time is 0.15 μs. Simulation results show that the height of the tall-object plays an important role on the peak value of lightning electric field. For example, for the case of distance d=100 m, the peak value of vertical electric field decreases from 8.59 kV·m-1 to 3.41 kV·m-1 with the height of the tall-object increasing from 100 m to 600 m (decrement:63%). Moreover, for horizontal electric field, the positive peak value increases from 0.7 kV·m-1 to 1.29 kV·m-1 (increment:84%), and the amplitude of negative peak increases up to 130%. The peak value of azimuthal magnetic field and horizontal electric field will increase with the tall-object height, when the distance of the observation point is constant. However, for the case of distance d=100 m, 300 m, the vertical electric field peak will decrease with the tall-object height increasing. Furthermore, for the case of d=500 m, the vertical electric field peak increase first and then decrease with the height. In addition, the tall-object height has an effect on the dependence of vertical electric field peak on distance d. For relative lower/taller strike object, the peak value of the corresponding vertical electric field attenuates quickly/slowly with the observation distance d. Results obtained are very useful for lightning protection design of power cables and electronic equipment in the vicinity of tall objects.
  • Fig. 1  Geometry model

    Fig. 2  Validation of the method used in this paper

    Fig. 3  Waveforms of vertical electric field

    Fig. 4  Waveforms of azimuthal magnetic field

    Fig. 5  Waveforms of horizontal electric field

    Table  1  Peak value of vertical electric field(unit:kV·m-1)

    距离 h=100 m h=300 m h=500 m h=600 m
    d=100 m 8.59 4.86 3.70 3.41
    d=300 m 3.26 2.83 2.20 1.99
    d=500 m 1.84 1.88 1.62 1.51
    DownLoad: Download CSV

    Table  2  Peak value of azimuthal magnetic field(unit:A·m-1)

    距离 h=100 m h=300 m h=500 m h=600 m
    d=100 m 27.01 28.12 28.29 28.37
    d=300 m 8.31 9.10 9.22 9.27
    d=500 m 4.68 5.21 5.37 5.40
    DownLoad: Download CSV

    Table  3  Positive peak value of horizontal electric field(unit:kV·m-1)

    距离 h=100 m h=300 m h=500 m h=600 m
    d=100 m 0.70 1.08 1.25 1.29
    d=300 m 0.14 0.25 0.35 0.38
    d=500 m 0.07 0.13 0.16 0.18
    DownLoad: Download CSV

    Table  4  Negative peak value of horizontal electric field(unit:kV·m-1)

    距离 h=100 m h=300 m h=500 m h=600 m
    d=100 m -1.27 -2.57 -2.87 -2.92
    d=300 m -0.29 -0.49 -0.71 -0.78
    d=500 m -0.17 -0.24 -0.30 -0.35
    DownLoad: Download CSV
  • [1]
    Baba Y, Rakov V A.Lightning electromagnetic environment in the presence of a tall grounded strike object.Journal of Geophysical Research:Atmospheres, 2005, 110(D9), DOI: 10.1029/2004JD005505.
    [2]
    Rakov V A, Rachidi F.Overview of recent progress in lightning research and lightning protection.IEEE Transactions on Electromagnetic Compatibility, 2009, 51(3):428-442. doi:  10.1109/TEMC.2009.2019267
    [3]
    Rachidi F, Janischewskyj W, Hussein A M, et al.Current and electromagnetic field associated with lightning-return strokes to tall towers.IEEE Transactions on Electromagnetic Compatibility, 2001, 43(3):356-367. doi:  10.1109/15.942607
    [4]
    Rachidi F, Rakov V A, Nucci C A, et al.Effect of vertically extended strike object on the distribution of current along the lightning channel.Journal of Geophysical Research:Atmospheres, 2002, 107(D23), DOI: 10.1029/2002JD002119.
    [5]
    Bermudez J L, Rachidi F, Rubinstein M, et al.Far-field-current relationship based on the TL model for lightning return strokes to elevated strike objects.IEEE Transactions on Electromagnetic Compatibility, 2005, 47(1):146-159. doi:  10.1109/TEMC.2004.842102
    [6]
    Pavanello D, Rachidi F, Janischewskyj W, et al.On return stroke currents and remote electromagnetic fields associated with lightning strikes to tall structures:2.Experiment and model validation.Journal of Geophysical Research:Atmospheres, 2007, 112(D13), DOI: 10.1029/2006JD007959.
    [7]
    Mimouni A, Rachidi F, Azzouz Z.A finite-difference time-domain approach for the evaluation of electromagnetic fields radiated by lightning strikes to tall structures.Journal of Electrostatics, 2008, 66(9-10):504-513. doi:  10.1016/j.elstat.2008.05.002
    [8]
    Zhang Q, He L, Ji T, et al.On the field-to-current conversion factors for lightning strike to tall objects considering the finitely conducting ground.Journal of Geophysical Research:Atmospheres, 2014, 119(13):8189-8200. doi:  10.1002/2014JD021496
    [9]
    Zhang Q, Ji T, Hou W.Effect of frequency-dependent soil on the propagation of electromagnetic fields radiated by subsequent lightning strike to tall objects.IEEE Transactions on Electromagnetic Compatibility, 2015, 57(1):112-120. doi:  10.1109/TEMC.2014.2361926
    [10]
    Heidler F H, Manhardt M, Stimper K.Transient response of the top structure of the Peissenberg Tower to lightning.IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6):1547-1555. doi:  10.1109/TEMC.2015.2481088
    [11]
    Janischewskyj W, Hussein A M, Shostak V.Propagation of Lightning Current Within the CN Tower.CIGRE Study Committee, 1997, 33:2-3.
    [12]
    Rakov V A.Transient response of a tall object to lightning.IEEE Transactions on Electromagnetic Compatibility, 2001, 43(4):654-661. doi:  10.1109/15.974646
    [13]
    Heidler F, Wiesinger J, Zischank W. Lightning Currents Measured at a Telecommunication Tower from 1992 to 1998//14th International Zurich Symposium on Electromagnetic Compatibility. 2001.
    [14]
    Diendorfer G, Hadrian W, Hofbauer F, et al.Evaluation of lightning location data employing measurements of direct strikes to a radio tower.Elektrotechnik und Informationstechnik, 2002, 119(12):422-427. doi:  10.1007/BF03161357
    [15]
    Romero C, Rachidi F, Paolone M, et al.Statistical distributions of lightning currentsassociated with upward negative flashes based on the data collected at the Säntis (EMC) tower in 2010 and 2011.IEEE Transactions on Power Delivery, 2013, 28(3):1804-1812. doi:  10.1109/TPWRD.2013.2254727
    [16]
    Fisher R J, Schnetzer G H. 1993 Triggered Lightning Test Program: Environments Within 20 Meters of the Lightning Channel and Small Area Temporary Protection Concepts. Sandia National Labs, Albuquerque, United States, 1994.
    [17]
    王智敏, 吕伟涛, 陈绿文, 等.2011-2012年广州高建筑物雷电磁场特征统计.应用气象学报, 2015, 26(1):87-94. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150109&flag=1
    [18]
    冯建伟. 高塔对雷击电流及其电磁辐射环境的影响. 南京: 南京信息工程大学, 2011: 50-52. http://cdmd.cnki.com.cn/Article/CDMD-10300-1011155370.htm
    [19]
    谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. doi:  10.11898/1001-7313.20170210
    [20]
    谭涌波, 陈之禄, 张冬冬, 等.高建筑对周围建筑雷击保护距离的模拟.应用气象学报, 2016, 27(4):498-505. doi:  10.11898/1001-7313.20160413
    [21]
    廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
    [22]
    陈绿文, 吕伟涛, 张义军, 等.不同高度建筑物上的下行地闪回击特征.应用气象学报, 2015, 26(3):311-318. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150306&flag=1
    [23]
    李丹, 张义军, 吕伟涛.风力发电机叶片姿态与雷击概率关系模拟分析.应用气象学报, 2013, 24(5):585-594. doi:  10.11898/1001-7313.20130508
    [24]
    郭秀峰, 谭涌波, 郭凤霞, 等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2013, 24(2):189-196. doi:  10.11898/1001-7313.20130207
    [25]
    任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [26]
    Agrawal A K, Price H J, Gurbaxani S H.Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field.IEEE Transactions on Electromagnetic Compatibility, 1980(2):119-129. http://cn.bing.com/academic/profile?id=f4fc02cb4d19b17d31076acdcc3c2daf&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    Baba Y, Rakov V A.On the use of lumped sources in lightning return stroke models.Journal of Geophysical Research:Atmospheres, 2005, 110(D3), DOI: 10.1029/2004JD005202.
    [28]
    Nucci C A, Diendorfer G, Uman M A, et al.Lightning return stroke current models with specified channel-base current:A review and comparison.Journal of Geophysical Research:Atmospheres, 1990, 95(D12):20395-20408. doi:  10.1029/JD095iD12p20395
    [29]
    Yee K.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media.IEEE Transactions on Antennas and Propagation, 1966, 14(3):302-307. doi:  10.1109/TAP.1966.1138693
    [30]
    Liao Z P, Huang K, Yang B, et al.A transmitting boundary for transient wave analyses.Science in China(Series A), 1984, 27(10):1063-1076. http://cn.bing.com/academic/profile?id=16cb7058590c5b99fec50664eaf23ce2&encoded=0&v=paper_preview&mkt=zh-cn
    [31]
    葛德彪, 闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社, 2005.
    [32]
    Baba Y, Rakov V A.Electromagnetic fields at the top of a tall building associated with nearby lightning return strokes.IEEE Transactions on Electromagnetic Compatibility, 2007, 49(3):632-643. doi:  10.1109/TEMC.2007.902402
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (3743) PDF downloads(269) Cited by()
    • Received : 2018-03-05
    • Accepted : 2018-05-21
    • Published : 2018-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint