Guo Chunming, Ren Jingquan, Cao Tiehua, et al. Effects of low temperature during ear differentiation stage on yield components of spring maize. J Appl Meteor Sci, 2018, 29(4): 505-512. DOI:  10.11898/1001-7313.20180411.
Citation: Guo Chunming, Ren Jingquan, Cao Tiehua, et al. Effects of low temperature during ear differentiation stage on yield components of spring maize. J Appl Meteor Sci, 2018, 29(4): 505-512. DOI:  10.11898/1001-7313.20180411.

Effects of Low Temperature During Ear Differentiation Stage on Yield Components of Spring Maize

DOI: 10.11898/1001-7313.20180411
  • Received Date: 2018-02-09
  • Rev Recd Date: 2018-05-21
  • Publish Date: 2018-07-31
  • Low temperature and cold damage are the main agrometeorological disasters which affects the spring maize in Northeast China. The response of spring maize to low temperature and cold damage is investigated, and the influence level of the obstacle type of low temperature on spring maize breeding is confirmed. Selecting Zhengdan958 species of spring maize, artificial climate laboratory is used to simulate low temperature environment as 13℃(T1), 15℃(T2) and 17℃(T3), and effects of low temperature on yield components and photosynthetic rate in the ear differentiation stage(early stage, middle stage, late stage) of spring maize are studied. Results show that yield components and photosynthetic characteristics change with similar trends after being affected by different low temperatures during the ear differentiation stage. Compared with control check, there is no significant change in ear diameter and 100-grain weight under low temperature treatment, while the ear length and the kernel numbers per panicle decreased significantly, and the weight of the panicle also has a significantly reduction. Lower temperature and longer duration lead to heavier effects. Effects of low temperature during the early stage on the kernel numbers per panicle are the heaviest, lower during middle stage and the much weaker during late stage. During the early ear differentiation stage, compared with control check, the kernel numbers per panicle are reduced significantly by 28.5%, 28.4%, 16.5%, and the weight of the panicle decrease significantly by 31.5%, 29.4%, 21.1% under T1, T2 and T3 in three days. The kernel numbers per panicle are reduced significantly by 36%, 36.6%, 28.8%, and the weight of the panicle decrease significantly by 38%, 35.8%, 23.9% in five days. The net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate of leaves decrease significantly under low temperature. During the early ear differentiation stage, compared with control check, the net photosynthetic rate decrease by 36.2%, 26.5%, 24.4% under the treatment of T1, T2 and T3 in three days, and the net photosynthetic rate decrease by 63.8%, 53.3% and 47.1% in five days. The decrease of kernel numbers per panicle in spring maize caused by low temperature during the ear differentiation stage is the main cause of the yield reduction. One of the factors leading to the decrease of net photosynthetic rate is the restrictive effect of stoma of spring maize. Results above can be used as a reference for evaluating the impact of low temperature and cold damage on spring maize.
  • Fig. 1  Hourly variation of temperature between treatment of low temperature(early, middle and late stages) and control check during the experiment

    Fig. 2  Effect of low temperature during ear differentiation stage on kernel number per panicle of spring maize

    Fig. 3  Effect of low temperature during ear differentiation stage on kernel weight per panicle of spring maize

    Table  1  Daily variation of illumination intensity of artificial chamber

    时段 光照强度/lux
    06:00—07:59 10000
    08:00—08:59 14000
    09:00—09:59 20000
    10:00—10:59 26000
    11:00—11:59 32000
    12:00—12:59 36000
    13:00—14:59 40000
    15:00—15:59 32000
    16:00—16:59 26000
    17:00—17:59 18000
    18:00—18:59 10000
    19:00—次日05:59 0
    DownLoad: Download CSV

    Table  2  Effect of low temperature during early stage of ear differentiation on yield components of spring maize

    日数/d 处理 穗长/cm 穗粗/mm 穗粒数/粒 百粒重/g 穗粒重/g
    3 对照 16.4±0.5 52.7±0.6 549.3±18.5 36.4±2.1 200.0±10.7
    处理1 13.3±0.3 51.2±3.6 392.7±21.9 34.8±2.3 137.1±14.3
    处理2 13.8±0.9 52.7±1.1 393.3±8.3 35.9±0.8 141.2±4.6
    处理3 16.7±0.3 52.2±1.8 458.7±24.4 34.5±0.8 157.9±5.3
    5 对照 16.4±0.5 52.7±0.6 549.3±18.5 36.4±2.1 200.0±10.7
    处理1 11.3±1.2 51.7±1.4 351.3±1.2 35.3±3.0 124.0±10.2
    处理2 11.6±1.0 51.7±1.7 348.0±12.0 36.9±2.3 128.5±8.8
    处理3 13.7±0.6 52.7±2.3 391.0±41.0 35.7±2.1 152.3±20.0
    DownLoad: Download CSV

    Table  3  Effect of low temperature during middle stage of ear differentiation on yield components of spring maize

    日数/d 处理 穗长/cm 穗粗/mm 穗粒数/粒 百粒重/g 穗粒重/g
    3 对照 16.4±0.5 52.7±0.6 549.3±18.5 36.4±2.1 200.0±10.7
    处理1 12.4±1.8 49.9±1.0 452.7±6.4 32.8±6.0 126.9±10.8
    处理2 14.0±1.7 50.5±2.1 458.7±70.5 32.6±3.4 149.1±25.2
    处理3 15.4±2.2 50.3±1.8 502.0±42.0 33.3±5.8 142.9±36.5
    5 对照 16.4±0.5 52.7±0.6 549.3±18.5 36.4±2.1 200.0±10.7
    处理1 12.8±2.5 49.8±0.5 373.3±64.7 33.3±1.1 124.3±21.4
    处理2 12.7±1.9 48.9±3.6 391.3±63.0 32.0±2.1 125.0±18.7
    处理3 15.3±0.6 51.7±0.7 500.0±38.2 32.7±1.8 163.0±3.2
    DownLoad: Download CSV

    Table  4  Effect of low temperature during late stage of ear differentiation on yield components of spring maize

    日数/d 处理 穗长/cm 穗粗/mm 穗粒数/粒 百粒重/g 穗粒重/g
    3 对照 16.4±0.5 52.7±0.6 549.3±18.5 36.4±2.1 200.0±10.7
    处理1 14.9±1.0 49.2±1.0 388.7±65.2 34.9±5.1 133.6±6.1
    处理2 15.5±1.0 50.8±0.8 504.7±49.6 32.8±1.9 150.2±33.5
    处理3 15.0±0.5 50.5±1.5 528.0±57.7 32.3±4.8 170.0±26.0
    5 对照 16.4±0.5 52.7±0.6 549.3±18.5 36.4±2.1 200.0±10.7
    处理1 14.5±0.5 49.1±1.8 394.0±33.3 33.4±3.6 130.7±5.7
    处理2 15.2±2.8 50.5±3.7 448.7±48.0 33.4±6.0 147.9±11.4
    处理3 15.5±1.8 51.4±1.3 477.7±4.0 31.5±2.3 150.3±9.9
    DownLoad: Download CSV

    Table  5  Effect of low temperature during ear differentiation stage on photosynthetic characteristics of spring maize

    时期 日数/d 处理 Pn/(μmol·m-2 s-1) Gs/(mol·m-2 s-1) Ci/(μmol·mol-1) Tr(mmol·m-2 s-1)
    前期 3 对照 26.71±0.10 0.22±0.0006 127.57±4.23 2.22±0.04
    处理1 17.03±1.64 0.11±0.01 80.38±17.03 1.66±0.23
    处理2 19.63±1.33 0.12±0.02 83.42±6.86 1.47±0.32
    处理3 20.18±1.56 0.12±0.003 122.54±1.50 1.43±0.02
    5 对照 33.16±0.12 0.22±0.0001 128.80±2.33 3.55±0.002
    处理1 12.01±0.59 0.06±0.001 78.49±0.27 0.95±0.009
    处理2 15.48±5.24 0.09±0.03 95.40±23.43 1.47±0.51
    处理3 17.54±0.01 0.09±0.0003 96.29±1.11 1.45±0.004
    中期 3 对照 34.13±1.99 0.42±0.17 140.28±55.13 6.45±1.57
    处理1 11.72±2.31 0.06±0.007 61.27±9.0 0.85±0.98
    处理2 14.16±1.87 0.07±0.008 64.70±10.81 1.16±0.11
    处理3 16.09±2.27 0.08±0.01 139.72±19.23 1.61±0.17
    5 对照 24.85±0.008 0.14±0.0002 148.03±0.38 2.35±0.002
    处理1 9.32±0.73 0.06±0.0004 47.30±0.35 1.40±0.007
    处理2 10.86±0.03 0.06±0.0001 51.72±0.95 1.39±0.003
    处理3 12.56±0.08 0.06±0.0002 146.21±0.77 1.11±0.004
    后期 3 对照 26.29±0.05 0.20±0.000 175.24±1.41 3.96±0.004
    处理1 14.79±0.09 0.12±0.0001 84.29±0.09 2.34±0.004
    处理2 16.74±0.02 0.12±0.0001 127.56±1.12 2.33±0.003
    处理3 18.09±0.08 0.13±0.0001 134.08±0.07 2.48±0.002
    5 对照 33.15±0.71 0.23±0.01 89.02±9.34 4.17±0.09
    处理1 15.26±0.24 0.08±0.005 29.71±13.54 1.37±0.07
    处理2 18.48±3.96 0.09±0.03 44.57±17.51 1.63±0.40
    处理3 22.78±3.22 0.13±0.02 54.18±2.89 2.19±0.23
    DownLoad: Download CSV
  • [1]
    高素华.玉米延迟低温冷害的动态监测.自然灾害学报, 2003, 12(2):117-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb200302021
    [2]
    刘布春, 王石立, 庄立伟, 等.基于东北玉米区域动力模型的低温冷害预报应用研究.应用气象学报, 2003, 14(5):616-625. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030576&flag=1
    [3]
    李蕊, 郭建平.东北春玉米非线性积温模型参数改进.应用气象学报, 2018, 29(2):154-164. doi:  10.11898/1001-7313.20180203
    [4]
    李蕊, 郭建平.东北春玉米积温模型的改进与比较.应用气象学报, 2017, 28(6):678-689. doi:  10.11898/1001-7313.20170604
    [5]
    唐余学, 郭建平.我国东北地区玉米冷害风险评估.应用气象学报, 2016, 27(3):352-360. doi:  10.11898/1001-7313.20160310
    [6]
    初征, 郭建平.未来气候变化对东北玉米品种布局的影响.应用气象学报, 2018, 29(2):165-176. doi:  10.11898/1001-7313.20180204
    [7]
    穆佳, 赵俊芳, 郭建平.近30年东北春玉米发育期对气候变化的响应.应用气象学报, 2014, 25(6):680-689. doi:  10.11898/1001-7313.20140604
    [8]
    于文颖, 冯锐, 纪瑞鹏, 等.苗期低温胁迫对玉米生长发育及产量的影响.干旱地区农业研究, 2013, 31(5):220-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx200902015
    [9]
    杨猛, 魏玲, 胡萌, 等.低温胁迫对玉米幼苗光合特性的影响.东北农业大学学报, 2012, 43(1):66-70. http://www.cqvip.com/QK/93806X/201413/661815220.html
    [10]
    张德荣.玉米低温冷害试验报告.中国农业气象, 1993, 14(5):32-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb200303022
    [11]
    王连敏.低温对玉米幼苗生长发育及功能的影响.国外农学——杂粮作物, 1990, 6(8):23-25. http://www.cnki.com.cn/Article/CJFDTotal-ZHZI201303028.htm
    [12]
    郑江平, 王春乙.低温、干旱并发对玉米苗期生理过程的影响.应用气象学报, 2006, 17(1):119-123. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060120&flag=1
    [13]
    史占忠, 贲显明, 张敬涛, 等.三江平原春玉米低温冷害发生规律及防御措施.黑龙江农业科学, 2003(2):7-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljnykx200302003
    [14]
    冯锐, 武晋雯, 纪瑞鹏, 等.低温胁迫下春玉米生长参数及产量影响分析.干旱地区农业研究, 2013, 31(1):183-187. http://www.cqvip.com/QK/91831X/201515/664875371.html
    [15]
    高素华, 刘玲.低温、干旱胁迫对抽雄期玉米叶片光化效率和光合作用速率的影响.气象, 2007, 33(4):88-91. doi:  10.7519/j.issn.1000-0526.2007.04.015
    [16]
    毛留喜, 魏丽.大宗作物气象服务手册.北京:气象出版社, 2015.
    [17]
    杨霏云, 郑秋红, 罗蒋梅, 等.实用农业气象指标.北京:气象出版社, 2015.
    [18]
    章家恩, 黄润, 饶卫民, 等.玉米群体内太阳光辐射垂直分布规律研究.生态科学, 2001, 20(4):8-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx200104002
    [19]
    中国气象局.农业气象观测规范.北京:气象出版社, 1993.
    [20]
    张毅, 戴俊英, 苏正淑, 等.后期低温对玉米雌穗的伤害作用.作物学报, 1995, 21(2):235-239. http://www.cqvip.com/QK/90181X/199502/1636230.html
    [21]
    Fracheboud Y, Haldimann P, Leipner J, et al.Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L).Journal of Experimental Botany, 1999, 50(338):1533-1540. doi:  10.1093/jxb/50.338.1533
    [22]
    Kratsh H A, Wise R R.The ultrastructure of chilling stress.Plant, Cell and Environment, 2000, 23(4):337-350. doi:  10.1046/j.1365-3040.2000.00560.x
    [23]
    徐俊增, 彭世彰, 魏征, 等.节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制.农业工程学报, 2010, 26(7):76-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nygu201007015&dbname=CJFD&dbcode=CJFQ
    [24]
    高素华, 张国民.低温对玉米幼苗生理反应的影响.应用气象学报, 1999, 10(2):238-242. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990263&flag=1
    [25]
    陈思思, 李春燕, 杨景, 等.拔节期低温冻害对扬麦16光合特性及产量形成的影响.扬州大学学报(农业与生命科学版), 2014, 35(3):59-64. http://www.oalib.com/paper/4141636
    [26]
    王瑞霞, 闫长生, 张秀英, 等.春季低温对小麦产量和光合特性的影响.作物学报, 2018, 44(2):288-296. http://www.oalib.com/paper/4402468
    [27]
    胡海军, 王志斌, 陈凤玉, 等.玉米冷害生理机制研究进展.玉米科学, 2009, 17(2):149-152. http://www.cnki.com.cn/Article/CJFDTotal-ZHZI201303028.htm
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(5)

    Article views (4435) PDF downloads(281) Cited by()
    • Received : 2018-02-09
    • Accepted : 2018-05-21
    • Published : 2018-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint