Xu Liangtao, Chen Shuang, Yao Wen, et al. Predicting lightning activities by a meso-scale electrification and discharge model. J Appl Meteor Sci, 2018, 29(5): 534-545. DOI:  10.11898/1001-7313.20180503.
Citation: Xu Liangtao, Chen Shuang, Yao Wen, et al. Predicting lightning activities by a meso-scale electrification and discharge model. J Appl Meteor Sci, 2018, 29(5): 534-545. DOI:  10.11898/1001-7313.20180503.

Predicting Lightning Activities by a Meso-scale Electrification and Discharge Model

DOI: 10.11898/1001-7313.20180503
  • Received Date: 2018-06-03
  • Rev Recd Date: 2018-08-02
  • Publish Date: 2018-09-30
  • Using WRF-Electric model coupled with electrification and discharge schemes, experimental predictions are carried out on the regional lightning activity from 2015 to 2017. By establishing a lightning activity prediction verification method, experiment results are classified and evaluated. Taking operational prediction as a reference, the ability to predict regional lightning activity with the numerical model is evaluated objectively. Main problems of the model are identified through verification, which provides a basis for its further improvement.The major region of lightning activity could be predicted well by the meso-scale electrification and discharge model. In the strict point-to-point verification, the CSI of the model prediction almost reach the operational prediction level during the main flood season (June-August). Quantitative verification results over North China also show that the prediction performs best with the forecast time of 6-12 hours. For small-scale thunderstorms, CSI of the model prediction is higher than that of the operational prediction. With expansion of the thunderstorm scale, the model prediction gradually loses its advantage. Therefore, the model is more valuable for predicting localized and small-scale thunderstorms.The range of the lightning activity predicted by the model is small and relatively concentrated, and some scattered lightning activity is often missed. Thus, in the parameterization of discharge, the threshold should be decreased at the initial time of lightning to improve the performance in relatively weaker electrification region. The lightning flash density predicted by the model is obviously greater than observed. To reduce the predicted flash density in the strong electrification area, the amount of neutralization charge of a single lightning should be consistent with the observation in the discharge scheme.CSI is relatively low with both the operational and this model prediction. In some cases, the prediction can achieve a relatively high CSI, but in long-term prediction experiments it's difficult to maintain high score using the strict point-to-point verification method. On the other hand, for weather phenomena with strong randomness in their occurrence position, the predictability is usually poor.Although the model can forecast the lightning activity area well, reaching the level of operational prediction, many problems remain in terms of the flash density forecast. How to parameterize lightning reasonably in a meso-scale model is still unresolved and extremely challenging. Currently, numerical models can predict precipitation successfully, while the ability to quantitatively predict the flash density is far behind. Improvement in lightning parameterization schemes and the selection of relevant thresholds in models relies on new methods and a large number of experiments being conducted.
  • Fig. 1  Schematic illustration of WRF-Electric model

    Fig. 2  Locations of two domains and observation stations(black dot)

    (the shaded denotes terrain)

    Fig. 3  Comparison of observed and simulated flash density with different forecast time of 3 cases

    Fig. 4  Verification for the operational and numerical prediction with different forecast time

    Fig. 5  Verification for the operational and numerical prediction with different forecast time

    Fig. 6  Observed, operational and numerical prediction total thunderstorm station numbers in all verification cases along with the hit station number, false alarm station number and missing alarm station number

    Table  1  Model design

    参数 d01 d02
    格点数 124×124 160×160
    格距/km 12 4
    时间步长/s 45 15
    积分时间/h 24 24
    边界层方案 YSU YSU
    微物理方案 Milbrandt双参 Milbrandt双参
    非感应起电方案 TGZ TGZ
    积云方案 Kain-Fritsch
    侧边界条件 嵌套
    长波辐射方案 RRTM RRTM
    短波辐射方案 Dudhia Dudhia
    DownLoad: Download CSV
  • [1]
    Zhang W, Meng Q, Ma M, et al.Lightning casualties and damages in China from 1997 to 2009. Nat Hazards, 2011, 57(2):465-476. doi:  10.1007/s11069-010-9628-0
    [2]
    郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150601&flag=1
    [3]
    周康辉, 郑永光, 蓝渝.基于闪电数据的雷暴识别、追踪与外推方法.应用气象学报, 2016, 27(2):173-181. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160205&flag=1
    [4]
    Wang F, Zhang Y, Dong W.A lightning activity forecast scheme developed for summer thunderstorms in South China. J Meteor Res, 2010, 24(5):631-640.
    [5]
    McCaul E W, Goodman S J, LaCasse K M, et al.Forecasting lightning threat using cloud-resolving model simulations. Wea Forecastin, 2009, 24(3):709-729. doi:  10.1175/2008WAF2222152.1
    [6]
    黄蕾, 周筠珺, 谷娟, 等.雷暴中雷电活动与WRF模式微物理和动力模拟量的对比研究.大气科学, 2015, 39(6):1095-1111. http://d.old.wanfangdata.com.cn/Periodical/daqikx201506004
    [7]
    Burrows W R, Price C, Wilson L J.Warm season lightning probability prediction for Canada and the Northern United States. Wea Forecasting, 2005, 20(6):971-988. doi:  10.1175/WAF895.1
    [8]
    Rajeevan M, Madhulatha A, Rajasekhar M, et al.Development of a perfect prognosis probabilistic model for prediction of lightning over south-east India. J Earth Syst Sci, 2012, 121(2):355-371. doi:  10.1007/s12040-012-0173-y
    [9]
    Shafer P E, Fuelberg H E.A perfect prognosis scheme for forecasting warm-season lightning over Florida. Mon Wea Rev, 2008, 136(6):1817-1846. doi:  10.1175/2007MWR2222.1
    [10]
    Sousa J F, Fragoso M, Mendes S, et al.Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal. Atmos Res, 2013, 132-133:46-64. doi:  10.1016/j.atmosres.2013.04.010
    [11]
    Zepka G S, Pinto O, Saraiva A C V.Lightning forecasting in southeastern Brazil using the WRF model. Atmos Res, 2014, 135-136:344-362. doi:  10.1016/j.atmosres.2013.01.008
    [12]
    Lynn B, Yair Y.Prediction of lightning flash density with the WRF model. Adv Geosci, 2010, 23:11-16. doi:  10.5194/adgeo-23-11-2010
    [13]
    Wong J, Barth M C, Noone D.Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations. Geosci Model Dev, 2013, 6(2):429-443. doi:  10.5194/gmd-6-429-2013
    [14]
    Yair Y, Lynn B, Price C, et al.Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. J Geophys Res, 2010, 115(D4):D04205.
    [15]
    Bright D R, Wandishin M S, Jewell R E, et al. A Physically Based Parameter for Lightning Prediction and Its Calibration in Ensemble Forecasts//Conference on Meteorological Applications of Lightning Data. Amer Meteor Soc, 2005.
    [16]
    Sturtevant J S. The Severe Local Storm Forecasting Primer//Weather Scratch Meteor Serv. 1995.
    [17]
    Lynn B H, Yair Y, Price C, et al.Predicting cloud-to-ground and Intracloud lightning in weather forecast models. Wea Forecasting, 2012, 27(6):1470-1488. doi:  10.1175/WAF-D-11-00144.1
    [18]
    徐良韬, 张义军, 王飞, 等. 利用WRF模式进行闪电活动的直接预报//第30届中国气象学会年会. 2013.
    [19]
    黄丽萍, 陈德辉, 管兆勇, 等.基于高分辨率中尺度气象模式的实际雷暴过程的数值模拟试验.大气科学, 2008, 32(6):1341-1351. doi:  10.3878/j.issn.1006-9895.2008.06.09
    [20]
    Liu D, Qie X, Peng L, et al.Charge structure of a summer thunderstorm in North China:Simulation using a Regional Atmospheric Model System. Adv Atmos Sci, 2014, 31(5):1022-1034. doi:  10.1007/s00376-014-3078-7
    [21]
    王飞.GRAPES中尺度模式对闪电活动的数值模拟研究.北京:中国科学院研究生院, 2010.
    [22]
    徐良韬, 张义军, 王飞, 等.雷暴起电和放电物理过程在WRF模式中的耦合及初步检验.大气科学, 2012, 36(5):1041-1052. http://d.old.wanfangdata.com.cn/Periodical/daqikx201205014
    [23]
    Fierro A O, Mansell E R, MacGorman D R, et al.The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model:Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon Wea Rev, 2013, 141(7):2390-2415. doi:  10.1175/MWR-D-12-00278.1
    [24]
    Wang H, Liu Y, Cheng W Y, et al.Improving lightning and precipitation prediction of severe convection using lightning data assimilation with NCAR WRF-RTFDDA. J Geophys Res, 2017, 122, https://doi.org/10.1002/2017JD027340.
    [25]
    Li W, Qie X, Fu S, et al.Simulation of quasi-linear mesoscale convective systems in northern China:Lightning activities and storm structure. Adv Atmos Sci, 2016, 33(1):85-100. doi:  10.1007/s00376-015-4170-3
    [26]
    Xu L, Zhang Y, Wang F, et al.Simulation of the electrification of a tropical cyclone using the WRF-ARW model:An idealized case. J Meteor Res, 2014, 28(3):453-468. doi:  10.1007/s13351-014-3079-6
    [27]
    Skamarock W C, Klemp J B, Dudhia J, et al. A Description of the Advanced Research WRF Version 3. 2008.
    [28]
    Gardiner B, Lamb D, Pitter R L, et al.Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J Geophys Res, 1985, 90(D4):6079-6086. doi:  10.1029/JD090iD04p06079
    [29]
    Ziegler C L, MacGorman D R, Dye J E, et al.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J Geophys Res, 1991, 96(D7):12833-12855. doi:  10.1029/91JD01246
    [30]
    谭涌波.闪电放电与雷暴云电荷、电位分布相互关系的数值模拟.合肥:中国科学技术大学, 2006.
    [31]
    Tan Y, Tao S, Liang Z, et al.Numerical study on relationship between lightning types and distribution of space charge and electric potential. J Geophys Res, 2014, 119(2):2013JD019983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233617202
    [32]
    Brooks I M, Saunders C P R, Mitzeva R P, et al.The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos Res, 1997, 43(3):277-295. doi:  10.1016/S0169-8095(96)00043-9
    [33]
    Saunders C P R, Keith W D, Mitzeva R P.The effect of liquid water on thunderstorm charging. J Geophys Res, 1991, 96(D6):11007-11017. doi:  10.1029/91JD00970
    [34]
    Saunders C P R, Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J Geophys Res, 1998, 103(D12):13949-13956. doi:  10.1029/97JD02644
    [35]
    Milbrandt J A, Yau M K.A multimoment bulk microphysics parameterization.Part Ⅰ:Analysis of the role of the spectral shape parameter. J Atmos Sci, 2005, 62(9):3051-3064. doi:  10.1175/JAS3534.1
    [36]
    Milbrandt J A, Yau M K.A multimoment bulk microphysics parameterization.Part Ⅱ:A proposed three-moment closure and scheme description. J Atmos Sci, 2005, 62(9):3065-3081. doi:  10.1175/JAS3535.1
    [37]
    Mlawer E J, Taubman S J, Brown P D, et al.Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. J Geophys Res, 1997, 102(D14):16663-16682. doi:  10.1029/97JD00237
    [38]
    Dudhia J.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 1989, 46(20):3077-3107. doi:  10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [39]
    Kain J S.The Kain-Fritsch convective parameterization:An update. J Appl Meteor, 2004, 43(1):170-181. doi:  10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [40]
    Hong S-Y, Noh Y, Dudhia J.A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev, 2006, 134(9):2318-2341. doi:  10.1175/MWR3199.1
    [41]
    Yao W, Zhang Y, Meng Q, et al.A comparison of the characteristics of total and cloud-to-ground lightning activities in hailstorms. Acta Meteor Sinica, 2013, 27(2):282-293. doi:  10.1007/s13351-013-0212-x
    [42]
    Shafer P E, Fuelberg H E.A perfect prognosis scheme for forecasting warm-season lightning over Florida. Mon Wea Rev, 2008, 136(6):1817-1846. doi:  10.1175/2007MWR2222.1
    [43]
    唐文苑, 周庆亮, 刘鑫华, 等.国家级强对流天气分类预报检验分析.气象, 2017, 43(1):63-76. doi:  10.3969/j.issn.1006-009X.2017.01.015
    [44]
    Wu F, Cui X, Zhang D-L, et al.SAFIR-3000 lightning statistics over the Beijing metropolitan region during 2005-07. J Appl Meteor Climatol, 2016, 55(12):2613-2633. doi:  10.1175/JAMC-D-16-0030.1
    [45]
    田付友, 郑永光, 张涛, 等.短时强降水诊断物理量敏感性的点对面检验, 应用气象学报, 2015, 26(4):385-396. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150401&flag=1
    [46]
    毕宝贵, 代刊, 王毅, 等.定量降水预报技术进展.应用气象学报, 2016, 27(5):534-549. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160503&flag=1
    [47]
    Qie X.Progresses in the atmospheric electricity researches in China during 2006-2010. Adv Atmos Sci, 2012, 29(5):993-1005. doi:  10.1007/s00376-011-1195-0
    [48]
    张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140501&flag=1
    [49]
    林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180311&flag=1
    [50]
    Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorms. Nature Geosci, 2008, 1(4):233-237. doi:  10.1038/ngeo162
    [51]
    刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160102&flag=1
    [52]
    张志孝, 郑栋, 张义军, 等.闪电初始阶段和尺度判别方法及其特征.应用气象学报, 2017, 28(4):414-426. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170403&flag=1
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (3673) PDF downloads(154) Cited by()
    • Received : 2018-06-03
    • Accepted : 2018-08-02
    • Published : 2018-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint