Wang Hong, Kong Fanyou, Jung Youngsun, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. DOI:  10.11898/1001-7313.20180504.
Citation: Wang Hong, Kong Fanyou, Jung Youngsun, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. DOI:  10.11898/1001-7313.20180504.

Quality Control of S-band Polarimetric Radar Measurements for Data Assimilation

DOI: 10.11898/1001-7313.20180504
  • Received Date: 2018-05-15
  • Rev Recd Date: 2018-07-19
  • Publish Date: 2018-09-30
  • The polarimetric radar is an important detection device whose measurements can be used for severe convective weather analysis and cloud microphysics progress research. Upgrading the traditional Doppler weather radar to polarimetric radar is a key part of severe convective weather monitoring program of China in the next few years, and the quality control of polarimetric radar measurements is key technical issue of the monitoring program. In Guangdong Province, based on the domestic and international mainstream quality control algorithms and relevant experience, a quality control system is developed for S-band polarimetric radars, to deal with the non-meteorological echo, non-standard blockage and high frequency noise in the radar radial, which have negative impacts on application of polarimetric radar measurements in data assimilation. The system is applied to the typical severe convective weather case in South China monsoon region, including a rainfall case, a severe convection case and a typhoon case in 2017. Evaluation results show that a combination of the hydrometeor classification screening based on fuzzy logic, co-polar cross-correlation coefficient (ρHV), signal-to-noise ratio (SNR) and specific differential phase (KDP) thresholding and despeckling can remove most non-meteorological echoes, and suppress virtual echo caused by anomalous propagation efficiently. Non-meteorological echoes include ground clutter, biological scatters, partial clear-air echo and radiographic noise due to anomalous propagation. A linear interpolation is employed to fill the small gap (the width of which is less than 5°) caused by non-standard blockage. A median filter and radial smooth are found effective in filtering out high frequency noise in the radar radial while maintaining polarimetric radar characteristics. After quality control, the meteorological echo is clearer and more prominent, and accounts for about 40% of valid observation which is defined by reflectivity (ZH) being larger than -30 dBZ. ZH of the meteorological echo is larger than 5 dBZ, ρHV is larger than 0.8 and less than 1.0, and the differential reflectivity (ZDR) is between -0.2 and 4 dB. Batch tests are needed to keep the quality control system stable and effective in the further work. And how to combine multiple polarimetric radar measurements to form a three-dimensional gridded product is also another important prerequisite for application of polarimetric radars measurements in the numerical model.
  • Fig. 1  Flow diagram of quality control for the polarimetric radar

    Fig. 2  Accumulated reflectivity at different elevations of Guangzhou polarimetric radar from 0600 UTC to 2100 UTC on 8 May 2017

    (a)0.5°, (b)1.5°, (c)2.4°

    Fig. 3  The effect of a different quality control component on measurements from Guangzhou polarimetric radar of 0.5° elevation at 1000 UTC 8 May 2017

    (a)raw reflectivity, (b)raw differential reflectivity, (c)reflectivity after non-standard blockage correction, (d)differential reflectivity after non-standard blockage correction, (e)reflectivity after hydrometeor classification filtering, (f)differential reflectivity after hydrometeor classification filtering, (g)reflectivity after thresholding, (h)differential reflectivity after thresholding, (i)reflectivity after despeckling, (j)differential reflectivity after despeckling, (k)reflectivity after median filter, (l)differential reflectivity after median filter

    Fig. 4  Hydrometeor classification type for Guangzhou radar of 0.5° elevation at 1000 UTC 8 May 2017

    Fig. 5  The result of the median filtering and radial smooth for measurements

    (a)reflectivity, (b)differential reflectivity, (c)pecific differential phase

    Fig. 6  Measurements before and after quality control for Guangzhou polarimetric radar of 0.5° elevation at 2154 UTC 6 May 2017

    (a)reflectivity before quality control, (b)differential reflectivity before quality control, (c)pecific differential phase before quality control, (d)reflectivity after quality control, (e)differential reflectivity after quality control, (f)pecific differential phase after quality control

    Fig. 7  Measurements before and after the quality control for Yangjiang polarimetric radar of 0.5° elevation at 0054 UTC 23 Aug 2017

    (a)reflectivity before quality control, (b)differential reflectivity before quality control, (c)specific differential phase before quality control, (d)reflectivity after quality control, (e)differential reflectivity after quality control, (f)specific differential phase after quality control

    Fig. 8  The scatter plot of ZH-ρHV during quality control for different case

    (a)Guangzhou radar of 0.5° elevation at 2154 UTC 6 May 2017, (b)Guangzhou radar of 0.5° elevation at 1000 UTC 8 May 2017, (c)Yangjiang radar of 0.5° elevation at 0054 UTC 23 Aug 2017

    Fig. 9  Frequency distribution of ZDR and ZH after quality control

    (a)Guangzhou radar of 0.5° elevation at 2154 UTC 6 May 2017,
    (b)Guangzhou radar of 0.5° elevation at 1000 UTC 8 May 2017,
    (c)Yangjiang radar of 0.5° elevation at 0054 UTC 23 Aug 2017

    Table  1  The rejection rate for various ρHV, SNR and KDP thresholds for Guangzhou polarimetric radar at 1000 UTC 8 May 2017(unit:%)

    仰角/(°) ρHV检查 SNR检查 KDP检查
    ZH ZDR KDP ZH ZDR KDP KDP
    0.5 7.09 3.16 17.30 5.58 5.55 5.44 27.29
    1.5 5.34 1.75 15.35 6.69 6.67 6.52 28.19
    2.4 7.51 3.15 18.20 5.66 5.64 5.51 25.77
    3.3 6.59 2.45 16.59 6.22 6.21 6.02 22.37
    4.3 5.92 2.42 12.56 7.75 7.74 7.57 25.59
    6.0 6.93 3.51 13.74 9.14 9.14 8.88 36.33
    9.9 8.78 5.34 20.46 9.33 9.20 8.61 38.52
    14.6 13.06 9.83 29.64 10.58 10.49 9.57 44.04
    19.5 28.00 23.92 39.50 11.43 11.35 10.32 59.74
    DownLoad: Download CSV
  • [1]
    Seliga T A, Bringi V N.Potential use of differential refleotivity measurements at orthogonal polarizations for measuring precipitation. J Appl Meteor, 1976, 15:69-76. doi:  10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [2]
    Bringi V N, Chandrasekar V, 李忱, 等.偏振多普勒天气雷达原理和应用.北京:气象出版社, 2010.
    [3]
    梁海河, 徐宝祥, 刘黎平, 等.偏振微波雷达探测大气研究进展及几个问题的考虑.地球科学进展, 2005, 20(5):541-548. doi:  10.3321/j.issn:1001-8166.2005.05.009
    [4]
    Ryzhkov A V, Schuur T J, Burgess D W, et al.The joint polarization experiment:Polarimetric rainfall measurements and hydrometeor classification. Bull Amer Meteor Soc, 2005, 86(6):809-824. doi:  10.1175/BAMS-86-6-809
    [5]
    刘黎平, 葛润生.中国气象科学研究院雷达气象研究50年.应用气象学报, 2006, 17(6):682-689. doi:  10.3969/j.issn.1001-7313.2006.06.006
    [6]
    陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. doi:  10.3969/j.issn.1001-7313.2004.06.015
    [7]
    Kumjian M R.Principles and applications of dual-polarization weather radar.Part I:Description of the polarimetric radar variables. J Oper Meteor, 2013, 1(19):226-242. doi:  10.15191/nwajom.2013.0119
    [8]
    Kumjian M R.Principles and applications of dual-polarization weather radar.Part Ⅱ:Warm and cold season applications. J Oper Meteor, 2013, 1(19):243-264. http://cn.bing.com/academic/profile?id=fd03b6158d951ca60395301ea611966c&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    王洪, 吴乃庚, 万齐林, 等.一次华南超级单体风暴的S波段偏振雷达观测分析.气象学报, 2018, 76(1):92-103. http://d.old.wanfangdata.com.cn/Periodical/qxxb201801007
    [10]
    刘黎平, 张沛源, 梁海河, 等.双多普勒雷达风场反演误差和资料的质量控制.应用气象学报, 2003, 14(1):17-29. doi:  10.3969/j.issn.1001-7313.2003.01.003
    [11]
    王红艳, 刘黎平, 王改利, 等.多普勒天气雷达三维数字组网系统开发及应用.应用气象学报, 2009, 20(2):214-224. doi:  10.3969/j.issn.1001-7313.2009.02.011
    [12]
    东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. doi:  10.3969/j.issn.1001-7313.2012.01.004
    [13]
    Lakshmanan V, Zhang J.Censoring biological echoes in weather Radar images. IEEE, 2009, 5:491-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210051541
    [14]
    Li Y, Zhang G, Doviak R J.Ground clutter detection using the statistical properties of signals received with a polarimetric Radar. IEEE Transactions on Signal Processing, 2014, 62(3):597-606. doi:  10.1109/TSP.2013.2293118
    [15]
    Carretero-Moya J, Gismero-Menoyo J, Blanco-del-Campo Á, et al.Statistical analysis of a high-resolution sea-clutter database. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(4):2024-2037. http://cn.bing.com/academic/profile?id=4d3ee8f2d854d49611a6c2edd8d96d43&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    李丰, 刘黎平, 王红艳, 等.C波段多普勒天气雷达地物识别方法.应用气象学报, 2014, 25(2):158-167. doi:  10.3969/j.issn.1001-7313.2014.02.005
    [17]
    Zhang J, Wang S, Clarke B. WSR-88D Reflectivity Quality Control Using Horizontal and Vertical Reflectivity Structure//11th Conf on Aviation, Range, and Aerospace Meteorology. Amer Meteor Soc, 2004.
    [18]
    Lakshmanan V, Fritz A, Smith T, et al.An automated technique to quality control Radar reflectivity data. Journal of Applied Meteorology and Climatology, 2007, 46(3):288-305. doi:  10.1175/JAM2460.1
    [19]
    刘黎平, 吴林林, 杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析.气象学报, 2007, 65(2):252-260. doi:  10.3321/j.issn:0577-6619.2007.02.011
    [20]
    江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. doi:  10.3969/j.issn.1001-7313.2009.02.010
    [21]
    Friedrich K, Hagen M, Einfalt T.A quality control concept for radar reflectivity, polarimetric parameters, and Doppler velocity. J Atmos Ocean Technol, 2006, 23(7):865-887. doi:  10.1175/JTECH1920.1
    [22]
    杜牧云, 刘黎平, 胡志群, 等.双线偏振多普勒雷达资料质量分析.气象学报, 2013, 71(1):146-158. http://d.old.wanfangdata.com.cn/Periodical/qxxb201301012
    [23]
    Tang L, Zhang J, Langston C, et al.A physically based precipitation-nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Wea Forecasting, 2014, 29(5):1106-1118. doi:  10.1175/WAF-D-13-00072.1
    [24]
    杜牧云, 刘黎平, 胡志群, 等.双线偏振雷达差分传播相移的质量控制.应用气象学报, 2012, 23(6):710-720. doi:  10.3969/j.issn.1001-7313.2012.06.008
    [25]
    Kessinger C, Ellis S, Andel J V. The Radar echo classifier: A fuzzy logic algorithm for the WSR-88D//Third Conf on Artificial Intelligence Applications to the Environmental Science. Amer Meteor Soc, 2003.
    [26]
    Lakshmanan V, Karstens C, Krause J, et al.Quality control of weather radar data using polarimetric variables. J Atmos Ocean Technol, 2014, 31(6):1234-1249. doi:  10.1175/JTECH-D-13-00073.1
    [27]
    Lakshmanan V, Karstens C, Krause J, et al.Which polarimetric variables are important for weather/no-weather discrimination? J Atmos Ocean Technol, 2015, 32(6):1209-1223. doi:  10.1175/JTECH-D-13-00205.1
    [28]
    肖艳姣, 王斌, 陈晓辉, 等.移动X波段双线偏振多普勒天气雷达差分相位数据质量控制.高原气象, 2012, 31(1):223-230. http://d.old.wanfangdata.com.cn/Periodical/gyqx201201024
    [29]
    Krause J M.A simple algorithm to discriminate between meteorological and nonmeteorological radar echoes. J Atmos Ocean Technol, 2016, 33(9):1875-1885. doi:  10.1175/JTECH-D-15-0239.1
    [30]
    Park H, Ryzhkov A V, Zrnic' D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS. Wea Forecasting, 2009, 24(3):730-748. doi:  10.1175/2008WAF2222205.1
    [31]
    Tang L, Zhang J, Qi Y, et al. Non-standard Blockage Mitigation for National Radar QPE Products//36th Conference on Radar Meteorology. Amer Meteor Soc, 2013: 354.
    [32]
    Chandrasekar V, Keränen R, Lim S, et al.Recent advances in classification of observations from dual polarization weather radars. Atmos Res, 2011, 119:97-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229142756
    [33]
    Wu C, Liu L, Wei M, et al.Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3):296-316. doi:  10.1007/s00376-017-6241-0
    [34]
    Ryzhkov A V, Giangrande S E, Schuur T J.Rainfall estimation with a polarimetric prototype of WSR-88D. J Appl Meteor, 2005, 44(4):502-515. doi:  10.1175/JAM2213.1
    [35]
    赵果, 王致君, 贾伟, 等.双线偏振天气雷达有效探测范围研究.高原气象, 2016, 35(1):244-250. http://d.old.wanfangdata.com.cn/Periodical/gyqx201601023
    [36]
    宗蓉, 刘春云.雷达反射率数据质量控制方法初探.气象与环境学报, 2009, 25(2):62-67. doi:  10.3969/j.issn.1673-503X.2009.02.012
    [37]
    王洪, 万齐林, 尹金方, 等.双线偏振雷达资料在数值模式中的应用:模拟器的构建.气象学报, 2016, 74(2):229-243. http://d.old.wanfangdata.com.cn/Conference/8786572
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (5275) PDF downloads(331) Cited by()
    • Received : 2018-05-15
    • Accepted : 2018-07-19
    • Published : 2018-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint