Tian Jun, Huo Zhiguo. Index and loss estimation of rain washing damage to early rice pollen in Jiangxi Province. J Appl Meteor Sci, 2018, 29(6): 657-666. DOI:  10.11898/1001-7313.20180602.
Citation: Tian Jun, Huo Zhiguo. Index and loss estimation of rain washing damage to early rice pollen in Jiangxi Province. J Appl Meteor Sci, 2018, 29(6): 657-666. DOI:  10.11898/1001-7313.20180602.

Index and Loss Estimation of Rain Washing Damage to Early Rice Pollen in Jiangxi Province

DOI: 10.11898/1001-7313.20180602
  • Received Date: 2018-06-22
  • Rev Recd Date: 2018-09-03
  • Publish Date: 2018-11-30
  • Rain washing damage to pollen is one of the main agrometeorological disasters of early rice in Jiangxi Province. However, there are few studies on the disaster index and loss estimation model of this disaster. And in routine agrometeorological service, there are no definite and targeted criterion and loss assessment basis of rain washing damage to pollen. Therefore, studies on disaster index and loss estimation mode of rain washing damage to pollen are of great importance to the disaster monitoring, loss assessment and agricultural disasters' insurance management of early rice. Taking the disaster of rain washing damage to pollen in Jiangxi Province as research object, 78 disaster samples of rain washing damage to pollen are picked out based on analysis of long-term (1981-2015) meteorological conditions during the whole growth period of early rice in 14 agrometeorological stations, and historical data about the observation of agrometeorological disasters, diseases and insect pests. Afterwards, index and loss estimation model of rain washing damage to early rice pollen are determined based on correlation analysis, normal distribution and principal component regression method, and verified by independent samples. Results show that the rainfall during heading-flowering stage of early rice has a significant effect on the formation of rain washing damage to early rice pollen. Main and key influence periods are 5 and 3 days before and after the heading-flowering stage, respectively. The daily precipitation 40 mm can be used as the threshold for rain washing damage to pollen in heading-flowering stage of early rice. Based on this index, the number of days with total precipitation exceeding 40 mm and their corresponding accumulative precipitation are counted. When the accumulative precipitation is between 40 mm and 170 mm (light disaster), the yield reduction rate of early rice is generally less than 15%, and the average reduction rate is 10%. When the accumulative precipitation exceeds 170 mm (severe disaster), the yield reduction rate is generally more than 15%, and the average reduction rate is 22%. The grading indexes are detected to be basically consistent with the historical occurrence levels of rain washing damage to early rice pollen. And simulation results of loss estimation model show that simulated early rice yields are highly accordant with the actual yields, the average relative error is 4.3%, and the relative error of 78% data is within 5%. It indicates that the model can be used to simulate and predict the yield reduction rate of early rice when rain washing damages rice pollen.
  • Fig. 1  Distribution of 14 agricultural meteorological observation stations in Jiangxi Province

    Fig. 2  Correlation of yield reduction rate to the number of days(a), accumulative precipitation(b) of daily precipitation above different boundary values

    Fig. 3  Frequency charts about accumulative precipitation(a) and its log transformation(b) of rain washing damage to pollen sample sets

    Fig. 4  Accumulative anomaly of yield reduction rate based on accumulative precipitation

    Fig. 5  Comparison between simulated yield and actual yield of observation section

    (black dots denote simulated yields with relative error above 5%)

    Table  1  Level indicators of rain washing damage to pollen

    灾害等级 累积降水量(日降水量不小于40 mm) 减产率
    平均 83%样本 17%样本
    轻度 [40 mm,170 mm) 10% 小于15% 15%~20%
    重度 不小于170 mm 22% 不小于15% 10%~14%
    DownLoad: Download CSV

    Table  2  Verification about level indicators of rain washing damage to pollen

    观测站 年份 降水(不小于40 mm)出现时期 累积降水量/mm 发生程度 减产率/% 符合程度
    南康 1992 抽穗扬花普遍期当日 49.1 轻度 5 符合
    南丰 2015 抽穗扬花普遍期后第2日 56.8 轻度 2 符合
    广丰 2015 抽穗扬花普遍期前第2日 71.9 轻度 7 符合
    宜丰 2015 抽穗扬花普遍期当日及其后第4日 108.9 轻度 14 符合
    婺源 2006 抽穗扬花普遍期后第1日 109.3 轻度 18 基本符合
    南昌市 1981 抽穗扬花普遍期后第2日和第3日 119.9 轻度 8 符合
    南昌县 1999 抽穗扬花普遍期当日及其后第1日 146.3 轻度 20 基本符合
    湖口 1991 抽穗扬花普遍期后第1日和第4日 157.9 轻度 15 符合
    莲花 1983 抽穗扬花普遍期后第2日和第3日 204.9 重度 36 符合
    樟树 2014 抽穗扬花普遍期前2日 204.9 重度 5 不符合
    DownLoad: Download CSV

    Table  3  Results of principal component analysis

    分量 特征值 累积贡献率/% 因子载荷矩阵
    X1 X2 X3
    1 2.475 82.50 0.994 0.889 0.834
    2 0.511 99.53 -0.057 -0.453 0.550
    3 0.014 100.00 -0.092 0.063 0.042
    DownLoad: Download CSV
  • [1]
    江西省统计局.江西统计年鉴.北京:中国统计出版社, 2000-2016.
    [2]
    黎毛毛, 余丽琴, 熊玉珍, 等.抽穗扬花期耐热水稻种质资源的筛选鉴定.江西农业学报, 2016, 28(6):1-5. http://d.old.wanfangdata.com.cn/Periodical/jxnyxb201606001
    [3]
    杨爱萍, 杜筱玲.江西省降水集中程度的变化特征.中国农业气象, 2010, 31(4):512-516. doi:  10.3969/j.issn.1000-6362.2010.04.005
    [4]
    刁操铨.作物栽培学各论(南方本).北京:中国农业出版社, 1994:83-84.
    [5]
    IPCC.Climate Change 2013:The Physical Science Basis.Cambridge:Cambridge University Press, 2013.
    [6]
    王玉洁, 周波涛, 任玉玉, 等.全球气候变化对我国气候安全影响的思考.应用气象学报, 2016, 27(6):750-758. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160612&flag=1
    [7]
    周广胜, 何奇瑾, 汲玉河.适应气候变化的国际行动和农业措施研究进展.应用气象学报, 2016, 27(5):527-533. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160502&flag=1
    [8]
    李维京, 张若楠, 孙丞虎, 等.中国南方旱涝年际年代际变化及成因研究进展.应用气象学报, 2016, 27(5):577-591. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160507&flag=1
    [9]
    任玉玉, 任国玉.1960-2008年江西省极端降水变化趋势.气候与环境研究, 2010, 15(4):462-469. doi:  10.3878/j.issn.1006-9585.2010.04.14
    [10]
    王怀清, 赵冠男, 彭静, 等.近50年鄱阳湖五大流域降水变化特征研究.长江流域资源与环境, 2009, 18(7):615-619. doi:  10.3969/j.issn.1004-8227.2009.07.004
    [11]
    胡菊芳, 张超美, 彭静, 等.江西省主要气象灾害年代际变化特征分析.气象与减灾研究, 2007, 30(4):37-42. doi:  10.3969/j.issn.1007-9033.2007.04.008
    [12]
    周永进, 王斌, 许有尊, 等.孕穗期淹水胁迫对早稻生长发育及产量的影响.中国稻米, 2013, 19(4):86-90. http://d.old.wanfangdata.com.cn/Periodical/zgdm201304023
    [13]
    宁金花, 霍治国, 陆魁东, 等.不同生育期淹涝胁迫对杂交稻形态特征和产量的影响.中国农业气象, 2013, 34(6):678-684. doi:  10.3969/j.issn.1000-6362.2013.06.010
    [14]
    Gouranga K, Narayan S, Ashwani K.Deep-water rice production as influenced by time and depth of flooding on the east coast of India.Archives of Agronomy and Soil Science, 2012, 58(6):573-592. doi:  10.1080/03650340.2010.533173
    [15]
    殷剑敏, 孔萍, 李迎春, 等.我国南方早稻洪涝灾害指标试验研究.自然灾害学报, 2009, 18(4):1-5. doi:  10.3969/j.issn.1004-4574.2009.04.001
    [16]
    汪天颖, 霍治国, 李旭辉, 等.基于生育时段的湖南省早稻洪涝等级指标及时空变化特征.生态学杂志, 2016, 35(3):709-718. http://d.old.wanfangdata.com.cn/Periodical/stxzz201603020
    [17]
    吕晓敏, 周广胜.双季稻主要气象灾害研究进展.应用气象学报, 2018, 29(4):385-395. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180401&flag=1
    [18]
    杨建莹, 霍治国, 吴立, 等.西南地区水稻洪涝灾害风险评估与区划.中国农业气象, 2016, 37(5):564-577. doi:  10.3969/j.issn.1000-6362.2016.05.009
    [19]
    张爱民, 马晓群, 杨太明, 等.安徽省旱涝灾害及其对农作物产量的影响.应用气象学报, 2007, 18(5):619-626. doi:  10.3969/j.issn.1001-7313.2007.05.006
    [20]
    Sakamoto T, Cao P V, Nguyen N V, et al.Agro-ecological interpretation of rice cropping systems in flood-prone areas using MODIS Imagery.Photogrammetric Engineering and Remote Sensing, 2009, 75(4):413-424. doi:  10.14358/PERS.75.4.413
    [21]
    Son N T, Chen C F, Chen C R, et al.Satellite-based investigation of flood-affected rice cultivation areas in Chao Phraya River Delta, Thailand.ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 86(4):77-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=722fad2e7b8b04ace3dcd49fd0c01e91
    [22]
    张玉烛, 张桂和, 朱国奇, 等.阴雨对早稻开花及受精结实的影响.中国水稻科学, 1995, 9(3):173-178. doi:  10.3321/j.issn:1001-7216.1995.03.013
    [23]
    伍智文, 解娜, 肖建中, 等.早稻空秕率与抽穗开花期气象条件分析.作物研究, 2013, 27(5):423-426. doi:  10.3969/j.issn.1001-5280.2013.05.02
    [24]
    黄淑娥, 田俊, 吴慧峻.江西省双季水稻生长季气候适宜度评价分析.中国农业气象, 2012, 33(4):527-533. doi:  10.3969/j.issn.1000-6362.2012.04.09
    [25]
    田俊, 黄淑娥, 祝必琴, 等.江西双季早稻气候适宜度小波分析.江西农业大学学报, 2012, 34(4):646-651;670. doi:  10.3969/j.issn.1000-2286.2012.04.005
    [26]
    张浩, 马晓群, 彭妮, 等.淮河流域冬小麦涝渍灾害损失评估研究.气象与环境学报, 2015, 31(6):123-129. doi:  10.3969/j.issn.1673-503X.2015.06.016
    [27]
    马雄威.线性回归方程中多重共线性诊断方法及其实证分析.华中农业大学学报(社会科学版), 2008(2):78-81. doi:  10.3969/j.issn.1008-3456.2008.02.019
    [28]
    丁元林, 孔丹莉, 毛宗福.多重线性回归分析中的常用共线性诊断方法.数理医药学杂志, 2004, 17(4):299-300. doi:  10.3969/j.issn.1004-4337.2004.04.006
    [29]
    陈斐, 杨沈斌, 申双和, 等.基于主成分回归法的长江中下游双季早稻相对气象产量模拟模型.中国农业气象, 2014, 35(5):522-528. doi:  10.3969/j.issn.1000-6362.2014.05.007
    [30]
    吴诚鸥, 秦伟良.近代实用多元统计分析.北京:气象出版社, 2007:86-87.
    [31]
    Liu R X, Kuang J, Gong Q, et al.Principal component regression analysis with SPSS.Computer Methods and Programs in Biomedicine, 2003, 71(2):141-147. doi:  10.1016/S0169-2607(02)00058-5
    [32]
    魏凤英.现代气候统计诊断与预测技术(第二版).北京:气象出版社, 2007:34-35.
    [33]
    Yang S B, Zhao X Y, Li B B, et al.Interpreting RADARSAT-2 quad-polarization SAR signatures from rice paddy based on experiments.Geoscience and Remote Sensing Letters, IEEE, 2012, 9(1):65-69. doi:  10.1109/LGRS.2011.2160613
    [34]
    Kebede Gurmessa T, Bárdossy A.A principal component regression approach to simulate the bed-evolution of reservoirs.J Hydrol, 2009, 368(1-4):30-41. doi:  10.1016/j.jhydrol.2009.01.033
    [35]
    帅细强, 王石立, 马玉平, 等.基于水稻生长模型的气象影响评价和产量动态预测.应用气象学报, 2008, 19(1):71-81. doi:  10.3969/j.issn.1001-7313.2008.01.010
    [36]
    秦鹏程, 刘敏, 万素琴, 等.不完整气象资料下基于作物模型的产量预报方法.应用气象学报, 2016, 27(4):407-416. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160403&flag=1
    [37]
    刘春, 张春辉, 郭萨萨.基于能量模型的水稻生长模型.应用气象学报, 2013, 24(2):240-247. doi:  10.3969/j.issn.1001-7313.2013.02.012
    [38]
    帅细强, 陆魁东, 黄晚华.不同方法在湖南省早稻产量动态预报中的比较.应用气象学报, 2015, 26(1):103-111. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150111&flag=1
    [39]
    丁颖.丁颖稻种作论文选集.北京:农业出版社, 1983:155-156.
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(3)

    Article views (5382) PDF downloads(216) Cited by()
    • Received : 2018-06-22
    • Accepted : 2018-09-03
    • Published : 2018-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint