Liu Xiaoyang, Li Hao, He Ping, et al. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. J Appl Meteor Sci, 2018, 29(6): 667-679. DOI:  10.11898/1001-7313.20180603.
Citation: Liu Xiaoyang, Li Hao, He Ping, et al. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. J Appl Meteor Sci, 2018, 29(6): 667-679. DOI:  10.11898/1001-7313.20180603.

Comparison on the Precipitation Measurement Between GPM/DPR and CINRAD Radars

DOI: 10.11898/1001-7313.20180603
  • Received Date: 2018-01-26
  • Rev Recd Date: 2018-08-16
  • Publish Date: 2018-11-30
  • It is necessary to find out the difference between space-borne and ground-based radar data for evaluating the possibility of combined use of them. 2 neighboring ground-based radars at Taizhou and Changzhou are first checked for data consistence in full resolution and then compared with the DPR radar respectively. Results from the precipitation case on 30 June 2015 show that 2 radars have 0.94 dB bias of mean reflectivity factor on the profile where distances to both radars are equal.To get high temporal and spatial resolution comparisons between DPR and CINRAD, the geometry-matching algorithm is used in vertical where 1-14 DPR range gates could be included in one sample pairs according to the distance to CINRAD radar site. The further away it's from the radar site, the more DPR gates can be included. The grid-matching algorithm is used in horizontal where total 5×5 grids in 1 km resolution are matched with one single DPR range gate. The DPR and CINRAD volume-averaged values are calculated for all such intersecting DPR range gates and 5×5 CINRAD grids. Statistic results on sample pairs show that the mean reflectivity factor biases of DPR radar are -1.2 dB and -1.6 dB for CINRAD Taizhou and Changzhou radars, respectively, and the mean rain rate converted from Z-R relationship are 0.10 mm·h-1 and 0.13 mm·h-1 lower than CINRAD radars', over the same area where the three radars scanned successively within 6 min. When the distance to CINRAD gets longer, the bias between DPR and CINRAD is larger near the top of echo. And the bias in the bright band area is 122 dB larger than the mean bias as well. But the bias has no obvious relevance with distance and height in the other area if beam filling is enough.Attenuation correction and echo coverage over sample cell are among important factors which affect comparison results. Though there is no suitable surface reference, the attenuation correction algorithm for DPR radar over land works and decreases 0.4 dB in mean bias between DPR and CINRAD Taizhou. The maximum correction is only 1.36 dB due to moderate intensity of radar reflectivity factor.The equivalent radar reflectivity factor must be modified for the application of comparing DPR radar to other wavelength radar when the equivalent radar reflectivity factor is greater than 37 dBZ. For the application of combined multi-wavelength (such as DPR and CINRAD), data quality control and clutter identification and elimination are all among direct acting factors.
  • Fig. 1  CINRAD Changzhou echo on 30 Jun 2015

    Fig. 2  Reflectivity factor of matched samples of CINRAD Taizhou and Changzhou on equal distance gates at different elevation angles

    (a)comparison of matched sample means(dots) of CINRAD Taizhou and Changzhou on equal distance gates at all different elevation angles, (b)marginal histogram of matched samples(dots) of CINRAD Taizhou and Changzhou on equal distance gates at three different elevation angles

    Fig. 3  Reflectivity factor of matched samples of CINRAD Taizhou and Changzhou on equal distance gates at different range section

    (a)comparison of matched sample means(dots) of CINRAD Taizhou and Changzhou on equal distance gates at different range section, (b)marginal histogram of matched samples(dots) of CINRAD Taizhou and Changzhou on equal distance gates at three different range section

    Fig. 4  Radar reflectivity factor Z profiles(a) and radar reflectivity factor difference profiles(b) of DPR and CINRAD

    Fig. 5  Distribution of the number of sample pairs(DPR and CINRAD Changzhou) along range

    Fig. 6  Distribution of Z difference between DPR and CINRAD Changzhou along range

    Fig. 7  Distribution of Z difference between DPR and CINRAD Changzhou above 5000 m along range

    Fig. 8  Z profiles of DPR before and after attenuation correction

    Fig. 9  DPR echo profile cross track(left) and along track(right) over China(zero of the left x axis denotes satellite nadir, the number of the right x axis is latitude of satellite nadir)

    (a)the ray 11 of measured Z along track, (b)the ray 16 of measured Z along track, (c)the ray 16 of processed Z by quality control

    Fig. 10  Mf vs rain rate at different temperature with μ=0(a) and μ=2(b)

    Fig. 11  Mf vs equivalent reflectivity factor ZeKu

    Table  1  Comparison of reflectivity factor and rain rate between DPR and CINRAD

    雷达名称 平均覆盖率/% 平均距离/km Z平均值/dBZ Z最大值/dBZ 平均降水强度/(mm·h-1)
    DPRCZ 94 46.1 23.6 35.5 0.97
    常州 82 46.1 24.8 35.5 1.07
    DPRTZ 91 54.7 23.5 34.1 0.95
    泰州 82 54.7 25.1 39.1 1.08
    DownLoad: Download CSV
  • [1]
    Hou A Y, and Coauthors.The global precipitation measurement mission.Bull Amer Meteor Soc, 2014, 95:701-722. doi:  10.1175/BAMS-D-13-00164.1
    [2]
    Toshio I, Toshiaki K, Robert M, et al.Rain profiling algorithm for the TRMM precipitation radar.J Appl Meteor, 1997, 39(12):2038-2052. doi:  10.1175-1520-0450(2001)040-2038-RPAFTT-2.0.CO%3b2/
    [3]
    Schwaller M R, Morris K R.A ground validation network for the global precipitation measurement mission.J Atmos Ocean Technol, 2011, 28(3):301-319. doi:  10.1175/2010JTECHA1403.1
    [4]
    Bolen S M, Chandrasekar V.Quantitative cross validation of space-based and ground-based radar observations.J Appl Meteor, 2000, 39(12):2071-2079. doi:  10.1175/1520-0450(2001)040<2071:QCVOSB>2.0.CO;2
    [5]
    Zhong Lingzhi, Yang Rongfang, Wen Yixin, et al.Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China.Atmos Res, 2017, 196:200-210. doi:  10.1016/j.atmosres.2017.06.016
    [6]
    商建, 范学花, 杨汝良.TRMM卫星测雨雷达与地基雷达的数据匹配问题研究.遥感技术与应用, 2009, 24(2):164-166. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200902007
    [7]
    王成刚, 葛文忠, 魏鸣.TRMM PR雷达与阜阳雷达降水资料的对比研究.遥感学报, 2003, 7(4):332-336. http://d.old.wanfangdata.com.cn/Periodical/ygxb200304017
    [8]
    王振会, 李圣殷, 戴建华, 等.星载雷达与地基雷达数据的个例对比分析.高原气象, 2015, 34(3):804-814. http://d.old.wanfangdata.com.cn/Periodical/gyqx201503023
    [9]
    陈廷娣, 王连仲, 窦贤康.TRMM卫星与机载雷达在降雨反演中的数据对比个例研究.应用气象学报, 2008, 19(4):454-462. doi:  10.3969/j.issn.1001-7313.2008.04.009
    [10]
    李嘉睿, 卢乃锰, 谷松岩.青藏高原地区TRMM PR地面降雨率的修正.应用气象学报, 2015, 26(5):636-640. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150513&flag=1
    [11]
    唐英杰, 马舒庆, 杨玲, 等.云底高度的地基毫米波云雷达观测及其对比.应用气象学报, 2015, 26(6):680-687. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150604&flag=1
    [12]
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. doi:  10.3969/j.issn.1001-7313.2009.04.011
    [13]
    高郁东, 万齐林, 薛纪善, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(1):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150105&flag=1
    [14]
    东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. doi:  10.3969/j.issn.1001-7313.2012.01.004
    [15]
    史锐, 程明虎, 崔哲虎, 等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报, 2005, 16(6):737-745. doi:  10.3969/j.issn.1001-7313.2005.06.004
    [16]
    楚志刚, 许丹, 王振会, 等.基于TRMM/PR的长江下游地基雷达一致性订正.应用气象学报, 2018, 29(3):296-306. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180304&flag=1
    [17]
    Toshio I, and Coauthors.GPM/DPR Level-2 Algorithm Theoretical Basis Document.https://pmm.nasa.gov/sites/default/files/document_files/ATBD_GPM_DPR_n3_dec15.pdf. [2017-12-03].
    [18]
    王强.综合气象观测.北京:气象出版社, 2012.
    [19]
    寇蕾蕾, 楚志刚, 李南, 等.TRMM星载测雨雷达和地基雷达反射率因子数据的三维融合.气象学报, 2016, 74(2):285-297. http://d.old.wanfangdata.com.cn/Periodical/qxxb201602010
    [20]
    Haynes J M, Marchand R T, Luo Z, et al.A multi-purpose radar simulation package:QuickBeam.Bull Amer Meteor Soc, 2007, 88:1723-1727. doi:  10.1175/BAMS-88-11-1723
    [21]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001:122-123;183.
    [22]
    Meneghini R, Jones J, Iguchi T, et al.A hybrid surface reference technique and its application to the TRMM precipitation radar.J Atmos Oceanic Technol, 2004, 21(11):1645-1658. doi:  10.1175/JTECH1664.1
    [23]
    Bolen S M, Chandrasekar V.Methodology for aligning and comparing space borne Radar and ground-based radar observations.J Atmos Oceanic Technol, 2003, 20:647-659. doi:  10.1175/1520-0426(2003)20<647:MFAACS>2.0.CO;2
    [24]
    Tagawa T, Hanado H, Okamoto K, et al.Suppression of surface clutter interference with precipitation measurements by space borne precipitation radar.IEEE Trans Geosci Remote Sens, 2007, 45:1324-1331. doi:  10.1109/TGRS.2007.894580
    [25]
    Takuji K, Toshio I, Masahiro K, et al.A statistical method for reducing sidelobe clutter for the Ku-band precipitation radar on board the GPM core observatory.J Atmos Ocean Technol, 2016, 33:1413-1428. doi:  10.1175/JTECH-D-15-0202.1
    [26]
    Liao L, Robert M.Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar.J Applied Meteorology and Climatology, 2009, 48:804-817. doi:  10.1175/2008JAMC1974.1
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (3928) PDF downloads(236) Cited by()
    • Received : 2018-01-26
    • Accepted : 2018-08-16
    • Published : 2018-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint