雷达名称 | 平均覆盖率/% | 平均距离/km | Z平均值/dBZ | Z最大值/dBZ | 平均降水强度/(mm·h-1) |
DPRCZ | 94 | 46.1 | 23.6 | 35.5 | 0.97 |
常州 | 82 | 46.1 | 24.8 | 35.5 | 1.07 |
DPRTZ | 91 | 54.7 | 23.5 | 34.1 | 0.95 |
泰州 | 82 | 54.7 | 25.1 | 39.1 | 1.08 |
Citation: | Liu Xiaoyang, Li Hao, He Ping, et al. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. J Appl Meteor Sci, 2018, 29(6): 667-679. DOI: 10.11898/1001-7313.20180603. |
Fig. 2 Reflectivity factor of matched samples of CINRAD Taizhou and Changzhou on equal distance gates at different elevation angles
(a)comparison of matched sample means(dots) of CINRAD Taizhou and Changzhou on equal distance gates at all different elevation angles, (b)marginal histogram of matched samples(dots) of CINRAD Taizhou and Changzhou on equal distance gates at three different elevation angles
Fig. 3 Reflectivity factor of matched samples of CINRAD Taizhou and Changzhou on equal distance gates at different range section
(a)comparison of matched sample means(dots) of CINRAD Taizhou and Changzhou on equal distance gates at different range section, (b)marginal histogram of matched samples(dots) of CINRAD Taizhou and Changzhou on equal distance gates at three different range section
Fig. 9 DPR echo profile cross track(left) and along track(right) over China(zero of the left x axis denotes satellite nadir, the number of the right x axis is latitude of satellite nadir)
(a)the ray 11 of measured Z along track, (b)the ray 16 of measured Z along track, (c)the ray 16 of processed Z by quality control
Table 1 Comparison of reflectivity factor and rain rate between DPR and CINRAD
雷达名称 | 平均覆盖率/% | 平均距离/km | Z平均值/dBZ | Z最大值/dBZ | 平均降水强度/(mm·h-1) |
DPRCZ | 94 | 46.1 | 23.6 | 35.5 | 0.97 |
常州 | 82 | 46.1 | 24.8 | 35.5 | 1.07 |
DPRTZ | 91 | 54.7 | 23.5 | 34.1 | 0.95 |
泰州 | 82 | 54.7 | 25.1 | 39.1 | 1.08 |
[1] |
Hou A Y, and Coauthors.The global precipitation measurement mission.Bull Amer Meteor Soc, 2014, 95:701-722. doi: 10.1175/BAMS-D-13-00164.1
|
[2] |
Toshio I, Toshiaki K, Robert M, et al.Rain profiling algorithm for the TRMM precipitation radar.J Appl Meteor, 1997, 39(12):2038-2052. doi: 10.1175-1520-0450(2001)040-2038-RPAFTT-2.0.CO%3b2/
|
[3] |
Schwaller M R, Morris K R.A ground validation network for the global precipitation measurement mission.J Atmos Ocean Technol, 2011, 28(3):301-319. doi: 10.1175/2010JTECHA1403.1
|
[4] |
Bolen S M, Chandrasekar V.Quantitative cross validation of space-based and ground-based radar observations.J Appl Meteor, 2000, 39(12):2071-2079. doi: 10.1175/1520-0450(2001)040<2071:QCVOSB>2.0.CO;2
|
[5] |
Zhong Lingzhi, Yang Rongfang, Wen Yixin, et al.Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China.Atmos Res, 2017, 196:200-210. doi: 10.1016/j.atmosres.2017.06.016
|
[6] |
商建, 范学花, 杨汝良.TRMM卫星测雨雷达与地基雷达的数据匹配问题研究.遥感技术与应用, 2009, 24(2):164-166. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200902007
|
[7] |
王成刚, 葛文忠, 魏鸣.TRMM PR雷达与阜阳雷达降水资料的对比研究.遥感学报, 2003, 7(4):332-336. http://d.old.wanfangdata.com.cn/Periodical/ygxb200304017
|
[8] |
王振会, 李圣殷, 戴建华, 等.星载雷达与地基雷达数据的个例对比分析.高原气象, 2015, 34(3):804-814. http://d.old.wanfangdata.com.cn/Periodical/gyqx201503023
|
[9] |
陈廷娣, 王连仲, 窦贤康.TRMM卫星与机载雷达在降雨反演中的数据对比个例研究.应用气象学报, 2008, 19(4):454-462. doi: 10.3969/j.issn.1001-7313.2008.04.009
|
[10] |
李嘉睿, 卢乃锰, 谷松岩.青藏高原地区TRMM PR地面降雨率的修正.应用气象学报, 2015, 26(5):636-640. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150513&flag=1
|
[11] |
唐英杰, 马舒庆, 杨玲, 等.云底高度的地基毫米波云雷达观测及其对比.应用气象学报, 2015, 26(6):680-687. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150604&flag=1
|
[12] |
何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. doi: 10.3969/j.issn.1001-7313.2009.04.011
|
[13] |
高郁东, 万齐林, 薛纪善, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(1):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150105&flag=1
|
[14] |
东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. doi: 10.3969/j.issn.1001-7313.2012.01.004
|
[15] |
史锐, 程明虎, 崔哲虎, 等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报, 2005, 16(6):737-745. doi: 10.3969/j.issn.1001-7313.2005.06.004
|
[16] |
楚志刚, 许丹, 王振会, 等.基于TRMM/PR的长江下游地基雷达一致性订正.应用气象学报, 2018, 29(3):296-306. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180304&flag=1
|
[17] |
Toshio I, and Coauthors.GPM/DPR Level-2 Algorithm Theoretical Basis Document.https://pmm.nasa.gov/sites/default/files/document_files/ATBD_GPM_DPR_n3_dec15.pdf. [2017-12-03].
|
[18] |
王强.综合气象观测.北京:气象出版社, 2012.
|
[19] |
寇蕾蕾, 楚志刚, 李南, 等.TRMM星载测雨雷达和地基雷达反射率因子数据的三维融合.气象学报, 2016, 74(2):285-297. http://d.old.wanfangdata.com.cn/Periodical/qxxb201602010
|
[20] |
Haynes J M, Marchand R T, Luo Z, et al.A multi-purpose radar simulation package:QuickBeam.Bull Amer Meteor Soc, 2007, 88:1723-1727. doi: 10.1175/BAMS-88-11-1723
|
[21] |
张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001:122-123;183.
|
[22] |
Meneghini R, Jones J, Iguchi T, et al.A hybrid surface reference technique and its application to the TRMM precipitation radar.J Atmos Oceanic Technol, 2004, 21(11):1645-1658. doi: 10.1175/JTECH1664.1
|
[23] |
Bolen S M, Chandrasekar V.Methodology for aligning and comparing space borne Radar and ground-based radar observations.J Atmos Oceanic Technol, 2003, 20:647-659. doi: 10.1175/1520-0426(2003)20<647:MFAACS>2.0.CO;2
|
[24] |
Tagawa T, Hanado H, Okamoto K, et al.Suppression of surface clutter interference with precipitation measurements by space borne precipitation radar.IEEE Trans Geosci Remote Sens, 2007, 45:1324-1331. doi: 10.1109/TGRS.2007.894580
|
[25] |
Takuji K, Toshio I, Masahiro K, et al.A statistical method for reducing sidelobe clutter for the Ku-band precipitation radar on board the GPM core observatory.J Atmos Ocean Technol, 2016, 33:1413-1428. doi: 10.1175/JTECH-D-15-0202.1
|
[26] |
Liao L, Robert M.Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar.J Applied Meteorology and Climatology, 2009, 48:804-817. doi: 10.1175/2008JAMC1974.1
|