设备编号 | 产地 | 通道数 | 测量高度/km | 接收机技术体制 | 测量周期 |
MWR-G | 德国 | 14 | 0~10 | 多路直接检波 | 秒级 |
MWR-A | 美国 | 22 | 0~10 | 超外差本振跳频 | 分钟级 |
MWR-C1 | 中国 | 22 | 0~10 | 超外差本振跳频 | 分钟级 |
MWR-C2 | 中国 | 16 | 0~10 | 多路直接检波 | 秒级 |
Citation: | Mao Jiajia, Zhang Xuefen, Wang Zhicheng, et al. Comparison of brightness temperature of multi-type ground-based microwave radiometers. J Appl Meteor Sci, 2018, 29(6): 724-736. DOI: 10.11898/1001-7313.20180608. |
Fig. 2 Effects of height and thickness of inversion layer with temperature increasing range on simulated brightness temperature
(a)increasing range is 5 K, inversion layer thickness is 2 km, (b)inversion layer bottom height is 0, inversion layer thickness is 2 km, (c)temperature increasing range is 5 K, inversion layer bottom height is 0.5 km
Table 1 The main performance of microwave radiometers involved in the test
设备编号 | 产地 | 通道数 | 测量高度/km | 接收机技术体制 | 测量周期 |
MWR-G | 德国 | 14 | 0~10 | 多路直接检波 | 秒级 |
MWR-A | 美国 | 22 | 0~10 | 超外差本振跳频 | 分钟级 |
MWR-C1 | 中国 | 22 | 0~10 | 超外差本振跳频 | 分钟级 |
MWR-C2 | 中国 | 16 | 0~10 | 多路直接检波 | 秒级 |
Table 2 The central frequency of the simulated bright channel
水汽通道序号 | 中心频率/GHz | 氧气通道序号 | 中心频率/GHz | |
1 | 22.24 | 8 | 51.26 | |
2 | 23.04 | 9 | 52.28 | |
3 | 23.84 | 10 | 53.86 | |
4 | 25.44 | 11 | 54.94 | |
5 | 26.24 | 12 | 56.66 | |
6 | 27.84 | 13 | 57.30 | |
7 | 31.40 | 14 | 58.00 |
Table 3 Abnormity elimination of brightness temperature data
通道序号 | MWR-G | MWR-A | MWR-C1 | MWR-C2 | |||||||
剔除样本量 | 剔除率/% | 剔除样本量 | 剔除率/% | 剔除样本量 | 剔除率/% | 剔除样本量 | 剔除率/% | ||||
1 | 6922 | 7.24 | 17637 | 29.70 | 11812 | 15.86 | 4620 | 10.48 | |||
2 | 6805 | 7.12 | 5072 | 8.54 | 9745 | 13.09 | 5608 | 12.73 | |||
3 | 7591 | 7.94 | 5009 | 8.43 | 10577 | 14.21 | 4375 | 9.93 | |||
4 | 8139 | 8.51 | 5679 | 9.56 | 8872 | 11.92 | 5440 | 12.35 | |||
5 | 8702 | 9.10 | 8287 | 13.95 | 5185 | 6.96 | 4098 | 9.30 | |||
6 | 8579 | 8.97 | 3993 | 6.72 | 6085 | 8.17 | 3609 | 8.19 | |||
7 | 11159 | 11.67 | 9417 | 15.86 | 5847 | 7.85 | 5126 | 11.63 | |||
8 | 7227 | 7.56 | 3760 | 6.33 | 7610 | 10.22 | 79 | 0.18 | |||
9 | 6634 | 6.94 | 3204 | 5.40 | 5334 | 7.16 | 113 | 0.26 | |||
10 | 3680 | 3.85 | 1584 | 2.67 | 2808 | 3.77 | 124 | 0.28 | |||
11 | 508 | 0.53 | 396 | 0.67 | 7447 | 10.00 | 302 | 0.69 | |||
12 | 251 | 0.26 | 150 | 0.25 | 665 | 0.89 | 185 | 0.42 | |||
13 | 275 | 0.29 | 635 | 1.07 | 511 | 0.69 | 70 | 0.16 | |||
14 | 251 | 0.26 | 1037 | 1.75 | 450 | 0.60 | 41 | 0.09 |
Table 4 Deviation of observed and simulated brightness temperature in clear sky(unit:K)
中心频率/GHz | MWR-G | MWR-A | MWR-C1 | MWR-C2 | |||||||
平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | ||||
22.24 | 1.16 | 3.12 | -1.92 | 4.74 | 3.63 | 5.19 | 2.77 | 5.24 | |||
23.04 | 1.35 | 3.04 | -0.87 | 4.82 | 0.79 | 2.95 | 2.30 | 5.19 | |||
23.84 | 1.05 | 2.69 | -1.61 | 4.34 | 1.60 | 3.32 | 1.97 | 4.24 | |||
25.44 | 0.74 | 1.91 | -0.08 | 2.90 | 2.82 | 3.84 | 1.96 | 4.26 | |||
26.24 | 0.65 | 1.76 | -1.93 | 4.15 | 1.30 | 1.91 | 1.83 | 3.70 | |||
27.84 | 0.49 | 1.63 | -2.21 | 4.89 | 1.10 | 1.64 | 1.58 | 3.42 | |||
31.40 | 0.50 | 1.40 | -1.47 | 3.61 | 0.70 | 1.52 | 1.60 | 3.18 | |||
51.26 | 4.09 | 4.36 | 4.66 | 4.87 | 2.89 | 5.39 | 4.01 | 5.13 | |||
52.28 | 2.99 | 3.38 | 4.02 | 4.17 | 4.90 | 5.64 | 3.87 | 4.68 | |||
53.86 | 3.38 | 3.50 | 1.48 | 1.71 | 4.48 | 4.60 | 2.81 | 3.73 | |||
54.94 | 0.10 | 0.44 | -0.35 | 0.70 | 1.61 | 2.31 | -0.27 | 2.43 | |||
56.66 | -0.48 | 0.66 | -0.89 | 1.07 | 1.14 | 1.54 | -1.33 | 2.47 | |||
57.30 | -0.46 | 0.67 | -0.96 | 1.24 | 1.16 | 1.58 | -1.42 | 2.44 | |||
58.00 | -0.42 | 0.64 | -1.02 | 1.27 | 1.15 | 1.59 | -1.55 | 2.43 |
Table 5 Deviation of observed and simulated brightness temperature in cloud samples(unit:K)
中心频率/GHz | MWR-G | MWR-A | MWR-C1 | MWR-C2 | |||||||
平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | ||||
22.24 | 0.56 | 3.43 | -1.85 | 4.59 | 3.07 | 5.01 | 3.17 | 5.75 | |||
23.04 | 0.72 | 3.40 | -0.03 | 4.06 | 0.42 | 3.53 | 2.25 | 5.38 | |||
23.84 | 0.30 | 3.26 | -1.16 | 3.54 | 1.14 | 3.74 | 1.72 | 4.43 | |||
25.44 | -0.18 | 3.09 | -0.03 | 3.28 | 2.25 | 4.06 | 1.55 | 4.39 | |||
26.24 | -0.35 | 3.17 | -1.81 | 3.99 | 0.51 | 3.39 | 1.27 | 4.04 | |||
27.84 | -0.69 | 3.48 | -2.04 | 4.57 | 0.22 | 3.57 | 0.94 | 3.87 | |||
31.40 | -0.93 | 4.08 | -1.89 | 4.54 | -0.46 | 4.17 | 0.86 | 4.16 | |||
51.26 | 2.27 | 5.85 | 3.02 | 5.98 | -0.02 | 6.18 | 2.23 | 5.92 | |||
52.28 | 1.56 | 4.57 | 2.86 | 4.98 | 2.71 | 5.37 | 2.50 | 4.89 | |||
53.86 | 3.06 | 3.35 | 1.33 | 1.86 | 3.88 | 4.12 | 2.58 | 3.49 | |||
54.94 | 0.14 | 0.45 | -0.31 | 0.67 | 2.04 | 2.65 | -0.16 | 2.24 | |||
56.66 | -0.43 | 0.57 | -0.72 | 0.93 | 1.12 | 1.45 | -1.21 | 2.26 | |||
57.30 | -0.42 | 0.59 | -0.74 | 0.92 | 1.16 | 1.48 | -1.31 | 2.23 | |||
58.00 | -0.38 | 0.55 | -0.99 | 1.23 | 1.27 | 1.63 | -1.49 | 2.21 |
Table 6 Deviation of observed and simulated brightness temperature in cloud samples(unit:K)
中心频率/GHz | MWR-G | MWR-A | MWR-C1 | MWR-C2 | |||||||
平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | 平均偏差 | 均方根误差 | ||||
22.24 | -35.68 | 70.45 | -62.92 | 76.12 | -19.72 | 51.28 | -38.66 | 58.00 | |||
23.04 | -39.56 | 73.98 | -66.91 | 80.20 | -25.85 | 55.73 | -41.13 | 60.97 | |||
23.84 | -45.00 | 80.25 | -74.45 | 88.00 | -29.19 | 59.55 | -49.26 | 69.02 | |||
25.44 | -55.83 | 91.23 | -84.45 | 98.81 | -39.39 | 66.81 | -59.42 | 80.78 | |||
26.24 | -60.28 | 95.69 | -92.33 | 107.09 | -44.63 | 71.42 | -66.89 | 87.45 | |||
27.84 | -67.74 | 103.12 | -101.39 | 116.55 | -53.34 | 78.35 | -73.29 | 94.98 | |||
31.40 | -81.37 | 115.12 | -116.45 | 131.08 | -69.85 | 91.08 | -85.66 | 107.72 | |||
51.26 | -71.06 | 91.68 | -90.02 | 101.08 | -63.13 | 76.34 | -154.44 | 155.22 | |||
52.28 | -53.67 | 69.76 | -68.09 | 76.72 | -46.22 | 56.42 | -117.24 | 117.81 | |||
53.86 | -10.62 | 16.10 | -17.04 | 19.54 | -8.96 | 12.20 | -27.17 | 27.35 | |||
54.94 | -0.19 | 3.37 | -2.41 | 3.26 | 0.53 | 2.16 | -2.56 | 3.43 | |||
56.66 | 0.70 | 2.22 | -0.90 | 1.50 | 1.06 | 1.37 | 0.07 | 2.05 | |||
57.30 | 0.73 | 2.18 | -0.89 | 1.60 | 1.28 | 1.60 | -0.10 | 1.89 | |||
58.00 | 0.79 | 2.14 | -1.03 | 1.52 | 1.15 | 1.45 | -0.11 | 2.02 |
[1] |
Yao Zhigang, Lin Longfu, Chen Hongbin, et al.A scheme for estimating tropical cyclone intensity using AMSU-A data.Adv Atomos Sci, 2008, 25(1):96-106. doi: 10.1007/s00376-008-0096-3
|
[2] |
Gao Y, Duan M.Preliminary comparisons of the typical polarized radiative transfer models:Precision and efficiency.J Remote Sens, 2010, 14(5):839-851. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXB201005002.htm
|
[3] |
周秀骥.大气微波辐射及遥感原理.北京:气象出版社, 1982.
|
[4] |
Cimini D, Campos E, Ware R, et al.Thermodynamic atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry.IEEE Trans Geosci Remote Sens, 2011, 49(12):4959-4969. doi: 10.1109/TGRS.2011.2154337
|
[5] |
Crewell S, Ebell K, Löhnert U.Can liquid water profiles be retrieved from passive microwave zenith observations.Geophys Res Lett, 2009, 36(6):L06803. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211022444/
|
[6] |
Ware R, Cimini D, Herzegh P, et al.Ground-based Microwave Radiometer Measurements During Precipitation//8th Specialist Meeting on Microwave Radiometry, 2004.
|
[7] |
Crewell S, Löhnert U.Accuracy of boundary layer temperature profiles retrieved with multi-frequency, multi-angle microwave radiometry.IEEE Trans Geosci Remote Sens, 2007, 45:2195-2201. doi: 10.1109/TGRS.2006.888434
|
[8] |
Ware R, Carpenter R, Güldner J, et al.A multichannel radiometric profiler of temperature, humidity, and cloud liquid.Radio Science, 2016, 38(4):44-1-44-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91eb3b202eb0ec2c092c73ca8f032e81
|
[9] |
Ware R, Cimini D, Campos E, et al.Thermodynamic and liquid profiling during the 2010 Winter Olympics.Atmos Res, 2013, 132-133(10):278-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6d0918fe631ee4393162fa45369c089
|
[10] |
Pospichal B, Küchler N, Löhnert U, et al.Calibration of Ground-based Microwave Radiometers-Accuracy Assessment and Recommendations for Network Users.Egu General Assembly Conference, 2016:14776. http://adsabs.harvard.edu/abs/2016EGUGA..1814776P
|
[11] |
刘思波, 何文英, 刘红燕, 等.地基微波辐射计探测大气边界层高度方法.应用气象学报, 2015, 26(5):626-635. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150512&flag=1
|
[12] |
姚雯, 马颖, 高丽娜.L波段与59-701探空系统相对湿度对比分析.应用气象学报, 2017, 28(2):218-226. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170209&flag=1
|
[13] |
刘红燕.三年地基微波辐射计观测温度廓线的精度分析.气象学报, 2011, 69(4):719-728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103344414
|
[14] |
侯叶叶, 刘红燕, 鲍艳松.地基微波辐射计反演水汽密度廓线精度分析.气象科技, 2016, 44(5):702-709. doi: 10.3969/j.issn.1671-6345.2016.05.002
|
[15] |
魏重, 雷恒池, 沈志来.地基微波辐射计的雨天探测.应用气象学报, 2001, 12(增刊Ⅰ):65-72. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2001z1009
|
[16] |
郭丽君, 郭学良.利用地基多通道微波辐射计遥感反演华北持续性大雾天气温、湿度廓线的检验研究.气象学报, 2015, 73(2):368-381. http://d.old.wanfangdata.com.cn/Periodical/qxxb201502012
|
[17] |
唐英杰, 马舒庆, 杨玲, 等.云底高度的地基毫米波云雷达观测对比.应用气象学报, 2015, 26(6):680-687. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150604&flag=1
|
[18] |
车云飞, 马舒庆, 杨玲, 等.云对地基微波辐射计反演湿度廓线的影响.应用气象学报, 2015, 26(2):193-203. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150207&flag=1
|
[19] |
王志诚, 张雪芬, 茆佳佳, 等.不同天气条件下地基微波辐射计探测性能比对.应用气象学报, 2018, 29(3):282-295. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180303&flag=1
|
[20] |
敖雪, 王振会, 徐桂荣, 等.微波辐射计亮温观测质量控制研究.气象科学, 2013, 33(2):130-137. http://d.old.wanfangdata.com.cn/Periodical/qxkx201302002
|
[21] |
王振会, 曹雪芬, 黄建松, 等.基于气象资料变化特征和辐射传输模式的微波辐射计工作状态分析.大气科学学报, 2014, 37(1):1-8. doi: 10.3969/j.issn.1674-7097.2014.01.001
|
[22] |
李青, 胡方超, 楚艳丽, 等.北京-地基微波辐射计的观测数据一致性分析和订正实验.遥感技术与应用, 2014, 29(4):547-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygjsyyy201404003
|
[23] |
王振会, 李青, 楚艳丽, 等.地基微波辐射计工作环境对K波段亮温观测影响.应用气象学报, 2014, 25(6):711-721. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140607&flag=1
|
[24] |
傅新姝, 谈建国.地基微波辐射计探测资料质量控制方法.应用气象学报, 2017, 28(2):209-217. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170208&flag=1
|
[25] |
Turner D D, Clough S A, Liljegren J C, et al.Retrieving liquid water path and precipitable water vapor from the atmospheric radiation measurement (ARM) microwave radiometers.IEEE Trans Geosc Remote Sens, 2007, 45(11):3680-3690. doi: 10.1109/TGRS.2007.903703
|
[26] |
鲍艳松, 钱程, 闵锦忠, 等.利用地基微波辐射计资料反演0~10 km大气温湿廓线试验研究.热带气象学报, 2016, 32(2):163-171. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201602003
|
[27] |
中国气象局.地面气象观测资料质量控制.北京:气象出版社, 2010.
|
[28] |
周毓荃, 欧建军.利用探空数据分析云垂直结构的方法及其应用研究.气象, 2010, 36(11):50-58. doi: 10.7519/j.issn.1000-0526.2010.11.008
|