Liu Jiayi, Deng Lijiao, Fu Guobin, et al. The applicability of two statistical downscaling methods to the Qinling Mountains. J Appl Meteor Sci, 2018, 29(6): 737-747. DOI:  10.11898/1001-7313.20180609.
Citation: Liu Jiayi, Deng Lijiao, Fu Guobin, et al. The applicability of two statistical downscaling methods to the Qinling Mountains. J Appl Meteor Sci, 2018, 29(6): 737-747. DOI:  10.11898/1001-7313.20180609.

The Applicability of Two Statistical Downscaling Methods to the Qinling Mountains

DOI: 10.11898/1001-7313.20180609
  • Received Date: 2018-05-11
  • Rev Recd Date: 2018-08-23
  • Publish Date: 2018-11-30
  • The Qinling Mountains is not only the dividing line of northern China and southern China, but also the dividing line between monsoon climate of medium latitudes and subtropical monsoon climate in China, i.e., the dividing line between China's warm temperate and subtropical regions. It also has abundant natural resources because of its special geographical location and complex climate environment. In the context of global warming, impacts of climate change on forest ecosystems in the Qinling Mountains are of great significance. Global climate model which is widely used in large-scale climate simulation studies, cannot be applied in this region due to low resolution. Statistical downscaling model can be used to provide local-scale daily temperature and precipitation for studying climate change impacts of this region. Different statistical downscaling models have different principals, as well as different predictors. Therefore, it is necessary to compare different downscaling models and to select more appropriate downscaling model to obtain reasonable simulation results. Focusing on the future daily mean temperature and precipitation for the Qinling Mountains, the multiple linear regression and the ridge regression downscaling approaches based on ASD (automated statistical downscaling) model are implemented. Outputs from the general circulation model (MPI-ESM-LR) under RCP4.5 and RCP8.5 scenarios are analyzed. Simulation results of two statistical downscaling approaches during calibration and validation periods are analyzed and future climate change projections in periods of 2006-2040, 2041-2070 and 2071-2100 are generated. During the calibration and validation periods, both statistical downscaling approaches perform well in simulating the mean temperature and precipitation. However, the multiple linear regression perform better than the ridge regression, and the mean of simulated temperature is better than that of precipitation. Both statistical downscaling approaches project an increase for the mean temperature and its magnitudes depending on the emission scenarios, i.e., RCP8.5 resulting in a higher temperature than RCP4.5. The annual precipitation would slightly decrease but not statistically significantly, while the seasonal distribution of annual precipitation will change, a slightly increase in spring and a decrease in other seasons, especially in summer. In summary, the multiple linear regression is more suitable for statistical downscaling research in the Qinling Mountains.
  • Fig. 1  Location of meteorological stations in the Qinling Mountains

    Fig. 2  Comparison of monthly mean value(a) and standard deviation(b) of temperature between the observed and the simulated by two statistical downscaling approaches in the Qinling Mountains during calibration period

    Fig. 3  Comparison of different climate variables of precipitation between the observed and the simulated by two statistical downscaling approaches in the Qinling Mountains during calibration period

    Fig. 4  Comparison of mean value(a) and standard deviation(b) of temperature between the observed and the simulated by two statistical downscaling approaches in the Qinling Mountains during validation period

    Fig. 5  Comparison of different climate variables of precipitation between the observed and the simulated by two statistical downscaling approaches in the Qinling Mountains during validation period

    Fig. 6  Future mean temperature change in the Qinling Mountains generated by two statistical downscaling approaches under different scenarios in different periods

    (a)the multiple linear regression, (b)the ridge regression

    Fig. 7  Future precipitation change in the Qinling Mountains generated by two statistical downscaling approaches under different scenarios in different periods

    (a)the multiple linear regression, (b)the ridge regression

    Table  1  Predictors used for NCEP/NCAR and MPI-ESM-LR

    序号 变量
    1 500 hPa相对湿度
    2 700 hPa相对湿度
    3 850 hPa相对湿度
    4 海平面气压
    5 500 hPa温度
    6 700 hPa温度
    7 850 hPa温度
    8 近地面温度
    9 500 hPa纬向风速
    10 700 hPa纬向风速
    11 850 hPa纬向风速
    12 近地面纬向风速
    13 500 hPa经向风速
    14 700 hPa经向风速
    15 850 hPa经向风速
    16 近地面经向风速
    17 500 hPa位势高度
    18 700 hPa位势高度
    19 850 hPa位势高度
    DownLoad: Download CSV

    Table  2  Explained variance and root mean square error of the multiple linear regression in calibration period

    站点 气温 降水量
    解释方差 均方根误差 解释方差 均方根误差
    宝鸡 0.969 0.0060 0.208 0.648
    西安 0.968 0.0063 0.182 0.569
    华山 0.919 0.0093 0.241 1.14
    略阳 0.961 0.0043 0.266 2.30
    汉中 0.958 0.0053 0.227 2.08
    佛坪 0.956 0.0053 0.184 0.955
    商县 0.973 0.0040 0.196 0.826
    镇安 0.962 0.0059 0.153 1.24
    石泉 0.964 0.0075 0.297 1.95
    安康 0.957 0.0082 0.204 1.21
    DownLoad: Download CSV

    Table  3  Explained variance and root mean square error of the ridge regression in calibration period

    站点 气温 降水量
    解释方差 均方根误差 解释方差 均方根误差
    宝鸡 0.969 0.0157 0.207 0.899
    西安 0.968 0.0188 0.179 0.749
    华山 0.919 0.0164 0.240 1.35
    略阳 0.961 0.0227 0.267 2.55
    汉中 0.959 0.0256 0.234 2.73
    佛坪 0.956 0.0180 0.182 1.18
    商县 0.973 0.0175 0.196 1.12
    镇安 0.962 0.0211 0.155 1.61
    石泉 0.962 0.0231 0.297 2.02
    安康 0.957 0.0253 0.204 1.97
    DownLoad: Download CSV
  • [1]
    白红英.秦巴地区森林植被对环境变化的响应.北京:科学出版社, 2014.
    [2]
    张莉, 丁一汇, 吴统文, 等.CMIP5模式对21世纪全球和中国年平均地表气温变化和2℃升温阈值的预估.气象学报, 2013, 71(6):1047-1060. http://d.old.wanfangdata.com.cn/Periodical/qxxb201306005
    [3]
    傅抱璞, 李兆元.秦岭山地的气候特点.陕西气象, 1983(1):1-11. http://cdmd.cnki.com.cn/Article/CDMD-10697-1011088067.htm
    [4]
    刘洪滨, 邵雪梅.秦岭南坡佛坪1789年以来1~4月平均温度重建.应用气象学报, 2003, 14(2):188-196. doi:  10.3969/j.issn.1001-7313.2003.02.006
    [5]
    高翔, 白红英, 张善红, 等.1959-2009年秦岭山地气候变化趋势研究.水土保持通报, 2012, 32(1):207-211. http://www.cqvip.com/QK/95720X/201201/41131757.html
    [6]
    叶笃正, 曾庆存, 郭裕福.当代气候研究.北京:气象出版社, 1991.
    [7]
    董敏, 吴统文, 王在志, 等.BCC_CSM1.0模式对20世纪降水及其变率的模拟.应用气象学报, 2013, 24(1):1-11. doi:  10.3969/j.issn.1001-7313.2013.01.001
    [8]
    汪方, 丁一汇.全球气候模式对东亚地区地表短波辐射的模拟检验.应用气象学报, 2008, 19(6):749-759. doi:  10.3969/j.issn.1001-7313.2008.06.015
    [9]
    陈丽娟, 顾伟宗, 伯忠凯, 等.黄淮地区夏季降水的统计降尺度预测.应用气象学报, 2017, 28(2):129-141. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170201&flag=1
    [10]
    高超, 张正涛, 陈实, 等.RCP4.5情景下淮河流域气候变化的高分辨率模拟.地理研究, 2014, 31(3):467-477. http://d.old.wanfangdata.com.cn/Periodical/dlyj201403006
    [11]
    周鑫, 李清泉, 孙秀博, 等.BCC_CSM1.1模式对我国气温的模拟和预估.应用气象学报, 2014, 25(1):95-106. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140110&flag=1
    [12]
    Sun Q H, Miao C Y, Duan Q Y.Projected changes in temperature and precipitation in ten river basins over China in 21st century.Int J Climatol, 2015, 35(6):1125-1141. doi:  10.1002/joc.2015.35.issue-6
    [13]
    IPCC.Climate Change 2014:The Physical Science Basis.Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovenmental Panel on Climate Change.Cambridge & New York:Cambridge University Press, 2014.
    [14]
    赵宗慈, 罗勇, 黄建斌.评估43个CMIP5模式模拟全球能量平衡能力.气候变化研究进展, 2015, 11(3):227-230. doi:  10.3969/j.issn.1673-1719.2015.03.010
    [15]
    刘昌明, 刘文彬, 傅国斌, 等.气候影响评价中统计降尺度若干问题的探讨.水科学进展, 2012, 23(3):427-437. http://d.old.wanfangdata.com.cn/Periodical/skxjz201203019
    [16]
    李巧萍, 丁一汇, 董文杰.SRES A2情景下未来30年我国东部夏季降水变化趋势.应用气象学报, 2008, 19(6):770-780. doi:  10.3969/j.issn.1001-7313.2008.06.017
    [17]
    丁梅, 江志红, 陈威霖.非齐次隐马尔可夫降尺度方法对江淮流域夏季逐日降水的模拟及其评估.气象学报, 2016, 74(5):757-771. http://d.old.wanfangdata.com.cn/Periodical/qxxb201605008
    [18]
    Maraun D, Rust H W, Osborn R J.Synoptic airflow and UK daily precipitation extremes:Development and validation of a vector generalised linear model.Extremes, 2010, 13(2):133-153. doi:  10.1007/s10687-010-0102-x
    [19]
    Christensen J H, Christensen O B.A summary of PRUDENCE model projections of changes in European climate by the end of this century.Clim Change, 2007, 81(1):7-30. http://treephys.oxfordjournals.org/external-ref?access_num=10.1007/s10584-006-9210-7&link_type=DOI
    [20]
    陈丽娟, 李维京, 张培群, 等.降尺度技术在月降水预报中的应用.应用气象学报, 2003, 14(6):648-655. doi:  10.3969/j.issn.1001-7313.2003.06.002
    [21]
    Chu J T, Xia J, Xu C Y.Statistical downscaling the daily precipitation for climate change scenarios in Haihe River basin of China.Journal of Natural Resources, 2008, 23(6):1068-1077. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZX200806012.htm
    [22]
    曾晓青, 王式功, 刘还珠, 等.统计降尺度方法在青海省冬季最低温度预测中的应用.高原气象, 2009, 29(6):1471-1477. http://d.old.wanfangdata.com.cn/Periodical/gyqx200906027
    [23]
    Giorgi F, Mearns L O.Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (REA) method.J Climate, 2002, 15(10):1141-1158. doi:  10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
    [24]
    刘永和, 郭维栋, 冯锦明, 等.气象资料的统计降尺度方法综述.地球科学进展, 2011, 26(8):837-847. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201108007
    [25]
    Maraun D, Wetterhall F, Ieson A M, et al.Precipitation downscaling under climate change:Recent developments to bridge the gap between dynamical models and the end user.Rev Geophys, 2010, 48(3):633-650. doi:  10.1029/2009RG000314/full
    [26]
    白红英, 马新萍, 高翔, 等.基于DEM的秦岭山地1月气温及0℃等温线变化.地理学报, 2012, 67(11):1443-1450. doi:  10.11821/xb201211001
    [27]
    Tallapragada V.Overview of the NOAA/NCEP Operational Hurricane Weather Research and Forecast (HWRF) Modelling System.Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction.Springer Netherlands, 2016.
    [28]
    陈晓晨, 徐影, 许崇海, 等.CMIP5全球气候模式对中国地区降水模拟能力的评估.气候变化研究进展, 2014, 10(3):217-225. doi:  10.3969/j.issn.1673-1719.2014.03.011
    [29]
    唐慧琴, 曾刚, 黄悦.BCC_CSM1.1(m)模式对热带太平洋潜热通量的评估.应用气象学报, 2016, 27(4):463-472. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160409&flag=1
    [30]
    Huth R.Statistical downscaling of daily temperature in central European.J Climate, 2002, 15(13):1731-1742. doi:  10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2
    [31]
    Huth R.Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors.J Climate, 2004, 17(3):640-652. doi:  10.1175/1520-0442(2004)017<0640:SOLDTC>2.0.CO;2
    [32]
    Hessami M, Gachon P, Ouarda T B, et al.Automated regression-based statistical downscaling tool.Environmental Modeling and Software, 2008, 23(6):813-834. doi:  10.1016/j.envsoft.2007.10.004
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(3)

    Article views (3449) PDF downloads(240) Cited by()
    • Received : 2018-05-11
    • Accepted : 2018-08-23
    • Published : 2018-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint