Feng Jinqin, Liu Ming, Cai Jing. Meso-scale convective characteristics of '7·22' extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. DOI:  10.11898/1001-7313.20180610.
Citation: Feng Jinqin, Liu Ming, Cai Jing. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. DOI:  10.11898/1001-7313.20180610.

Meso-scale Convective Characteristics of "7·22" Extreme Rain in the West Mountainous Area of Fujian

DOI: 10.11898/1001-7313.20180610
  • Received Date: 2018-03-26
  • Rev Recd Date: 2018-07-09
  • Publish Date: 2018-11-30
  • An extreme severe rain occurred in the west mountainous area of Fujian on 22 July 2015, with the precipitation of 254.9 mm for 6 hours and the maximum total precipitation of 295.5 mm. Using conventional observations, automatic weather station data, satellite data, wind-profiling radar and CINRAD-SA Doppler radar data, this extreme severe precipitation is analyzed focusing on the environmental conditions and structure characteristics of the meso-scale convective system (MCS). Results show that predominate influencing systems are the low-level shear line and the upper trough between subtropical high and the anticyclone over Yunnan and Guangxi. The reinforcement of unsteady convective stratification, decrease in the level of lifting condensation and free convection, high atmospheric precipitable water and weak vertical wind shear over the rainstorm-hit area are all favorable to the development of MCS. The initial convective cloud develops on the edge of Guangdong and Fujian. Convective cells develop strongly with the favorable meso-scale environmental conditions. At the stage of northeast development, convective cells are born in the north of MCS and move southeast. Many northwest and southeast short echo bands come into being one after another. MCS moves northeastward under actions of cell advection and storm propagation. At the stage of quasi-stationary, the strong temperature gradient area locates in the middle of MCS. The north and south cloud clusters weaken rapidly. The structure of MCS changes from training line and adjoining stratiform MCS to back-building and quasi-stationary MCS in the stage of development. Back-building and quasi-stationary MCS results in the extreme severe rain. The northwest airflow on high level increases and extends to low level. The inflow in front of MCS on low level is strengthened and extends to high level. The cold air intrusion at high level and reinforcement of southwest jet with wind velocity convergence at low level over the rainstorm-hit area lead to the development of MCS. The effect of the trumpet-shaped topography strengthens the southwest airflow on the boundary layer. A small cyclonic eddy generates in the north of Liancheng and is closely related to the southwest airflow within the boundary layer blocked by mountain. When the northwest convective cell moves in, the convective cell strongly develops. The northeast-southwest back-propagating MCS rarely moves because directions of cell advection and storm propagation are in confrontation. The back-propagating MCS causes obvious train effect, which brings about extreme severe rain.
  • Fig. 1  Observed precipitation at Longyan from 2000 BT 21 Jul to 2000 BT 22 Jul in 2015(unit:mm)

    Fig. 2  Hourly precipitation at Liancheng, Peitian and Wenheng from 2000 BT 21 Jul to 2000 BT 22 Jul in 2015

    Fig. 3  Evolution of MCS in the composite reflectivity of Longyan radar from 21 Jul to 22 Jul in 2015

    Fig. 4  The reflectivity(the shaded) of Longyan radar with 0.5° elevation at 0133 BT, 0203 BT and 0234 BT 22 Jul 2015

    (0203 BT and 0234 BT superpose 0200 BT, 0300 BT hourly precipitation(the number), unit:mm)

    Fig. 5  Composite reflectivity(a) and velocity of Longyan radar with the elevation of 2.4°(b), 3.4°(c) at 0954 BT 22 Jul 2015

    Fig. 6  Wind vector of Wuping wind-profiling radar from 0136 BT to 0318 BT on 22 Jul 2015

    Fig. 7  Surface wind field of Liancheng at 0900 BT 22 Jul 2015

    (the shaded denotes terrain)

    Table  1  Enviromental parameters of Ganxian, Heyuan and Xiamen from 21 Jul to 22 Jul in 2015

    时间 站点 对流有效位能/(J·kg-1) 对流抑制能量/(J·kg-1) 抬升凝结高度/hPa 自由对流高度/hPa 地面到500 hPa垂直风切变/(m·s-1)
    21T08:00 赣县 318.9 18.3 963.3 791.3 5.55
    河源 27.9 1.4 988.7 962.7 5.46
    厦门 2130.8 3.0 972.0 952.0 13.96
    21T20:00 赣县 655.7 50.0 947.1 817.1 7.03
    河源 425.3 9.2 983.5 897.5 10.60
    厦门 1340.3 3.3 973.8 947.8 11.10
    22T08:00 赣县 501.8 38.5 946.2 808.2 6.00
    河源 603.2 8.2 976.9 926.9 4.51
    厦门 923.9 1.6 981.9 957.9 6.02
    DownLoad: Download CSV
  • [1]
    MacGorman D R, Morgenstern C D.Some characteristics of cloud-to-ground lightning in mesoscale convective systems.J Geophys Res, 1998, 103(D12):14011-14023. doi:  10.1029/97JD03221
    [2]
    Schumacher R S, Johnson R H.Organization and environmental properties of extreme-rain-producing mesoscale convective systems.Mon Wea Rev, 2005, 133(4):961-976. doi:  10.1175/MWR2899.1
    [3]
    Schiesser H H, Houze Jr, Huntrieser H.The mesoscale structure of severe precipitation systems in Switzerland.Mon Wea Rev, 1995, 123:2070-2097. doi:  10.1175/1520-0493(1995)123<2070:TMSOSP>2.0.CO;2
    [4]
    Parker M D, Johnson R H.Organizational modes of midlatitude mesoscale convective systems.Mon Wea Rev, 2000, 128:3413-3436. doi:  10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
    [5]
    王晓芳, 汪小康, 徐桂荣.2010年长江中游梅雨期β中尺度系统环境特征的分析.高原气象, 2013, 32(3):750-761. http://d.old.wanfangdata.com.cn/Periodical/gyqx201303014
    [6]
    王晓芳, 崔春光.长江中下游地区梅雨期线状中尺度对流系统分析Ⅰ:组织类型特征.气象学报, 2012, 70(5):909-923. http://d.old.wanfangdata.com.cn/Periodical/qxxb201205001
    [7]
    易笑园, 李泽椿, 孙晓磊, 等.渤海西岸暴雨中尺度对流系统的结构及成因.应用气象学报, 2011, 22(1):23-34. doi:  10.3969/j.issn.1001-7313.2011.01.003
    [8]
    岳治国, 梁谷, 李燕, 等.陕西渭北带状中尺度对流雷达回波统计特征.气象, 2010, 36(6):66-72. http://d.old.wanfangdata.com.cn/Periodical/qx201006010
    [9]
    孙继松, 雷蕾, 于波, 等.近10年北京地区极端暴雨事件的基本特征.气象学报, 2015, 73(4):609-623. http://d.old.wanfangdata.com.cn/Periodical/qxxb201504001
    [10]
    袁美英, 李泽春, 张小玲.东北地区一次短时大暴雨β中尺度对流系统分析.气象学报, 2010, 68(1):125-136. http://d.old.wanfangdata.com.cn/Periodical/qxxb201001013
    [11]
    张家国, 周金莲, 谌伟, 等, 大别山西侧极端降水中尺度对流系统结构与传播特征.气象学报, 2015, 73(2):291-304. http://d.old.wanfangdata.com.cn/Periodical/qxxb201502006
    [12]
    何立富, 陈涛, 周庆亮, 等.北京"7.10"暴雨β-中尺度对流系统分析.应用气象学报, 2007, 18(5):655-665. doi:  10.3969/j.issn.1001-7313.2007.05.010
    [13]
    陈明轩, 王迎春, 肖现, 等.北京"7.21"暴雨雨团的发生和传播机理.气象学报, 2013, 71(4):569-592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201304001
    [14]
    苏爱芳, 孙景兰, 谷秀杰, 吕晓娜, 陈渭民.河南省对流性暴雨云系特征与概念模型.应用气象学报, 2013, 24(2):219-229. doi:  10.3969/j.issn.1001-7313.2013.02.010
    [15]
    孔期, 郑永光, 陈春艳.乌鲁木齐7·17暴雨的天气尺度与中尺度特征.应用气象学报, 2011, 22(1):12-22. doi:  10.3969/j.issn.1001-7313.2011.01.002
    [16]
    王瑾, 蒋建莹, 江吉喜."7·18"济南突发性大暴雨特征.应用气象学报, 2009, 20(3):295-302. doi:  10.3969/j.issn.1001-7313.2009.03.005
    [17]
    冯晋勤, 童以长, 罗小金.一次中-β尺度局地大暴雨对流系统的雷达回波特征.气象, 2008, 34(10):50-54. doi:  10.7519/j.issn.1000-0526.2008.10.007
    [18]
    Corfidi S F, Merritt J H, Fritsch J M.Predicting the movement of mesoscale convective complexes.Wea Forecasting, 1996, 11:41-46. doi:  10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2
    [19]
    俞小鼎.短时强降水临近预报的思路与方法.暴雨灾害, 2013, 32(3):202-209. doi:  10.3969/j.issn.1004-9045.2013.03.002
    [20]
    Wang H, Luo Y L, Jou B J D.Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX:Observational analysis.J Geophys Res, 2014, 119(23):13206-13232. http://d.old.wanfangdata.com.cn/Conference/9159483
    [21]
    赵宇, 裴昌春, 杨成芳.梅雨锋暴雨中尺度对流系统触发和组织化的观测分析.气象学报, 2017, 75(5):700-716. http://d.old.wanfangdata.com.cn/Periodical/qxxb201705002
    [22]
    何立富, 陈涛, 孔期.华南暖区暴雨研究进展.应用气象学报, 2016, 27(5):559-569. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160505&flag=1
    [23]
    李真光, 梁必骐, 包澄澜.华南前汛期暴雨的成因与预报问题//华南前汛期暴雨文集.北京: 气象出版社, 1981.
    [24]
    孙健, 周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响.气象学报, 2002, 60(3):333-341. doi:  10.3321/j.issn:0577-6619.2002.03.009
    [25]
    郭虎, 段丽, 杨波, 等.0679香山局地大暴雨的中小尺度天气分析.应用气象学报, 2008, 19(3):265-275. doi:  10.3969/j.issn.1001-7313.2008.03.002
    [26]
    叶成志, 潘志祥, 刘志雄, 等."03.7"湘西北特大致洪暴雨的触发机制数值研究.应用气象学报, 2007, 18(4):468-478. doi:  10.3969/j.issn.1001-7313.2007.04.007
    [27]
    吴恒强.海南岛地形造成的绕流效应对粤桂南部降雨的影响.大气科学, 1983, 7(3):335-340. doi:  10.3878/j.issn.1006-9895.1983.03.12
    [28]
    吴洪, 林锦瑞.垂直切变和地形影响下惯性重力波的发展.气象学报, 1997, 55(4):499-505. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700819421
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (5276) PDF downloads(292) Cited by()
    • Received : 2018-03-26
    • Accepted : 2018-07-09
    • Published : 2018-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint