Ma Shuqing, Chen Hongbin, Wang Guorong, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. DOI:  10.11898/1001-7313.20190101.
Citation: Ma Shuqing, Chen Hongbin, Wang Guorong, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. DOI:  10.11898/1001-7313.20190101.

Design and Initial Implementation of Array Weather Radar

DOI: 10.11898/1001-7313.20190101
  • Received Date: 2018-09-07
  • Rev Recd Date: 2018-12-12
  • Publish Date: 2019-01-31
  • With the development of phased array technology and networked radars, focusing on the requirement of small-scale weather fine detection, the array weather radar (AWR) is developed, which is a distributed and highly collaborative radar. The traditional Doppler weather radar can obtain radial velocity of cloud or precipitation targets. However, single radial velocity of a spatial point cannot reflect the movement information of precipitation and atmosphere. A multi-radar network can obtain a plurality of radial velocity values using a collaborative detection method, but disadvantages are that the time difference of the same single spatial point obtained by multiple radars is high, leading to composition error of the velocity or invalid observation.The AWR comprises at least three phased array transmit-receive subarrays (subarrays for short), and the detection region of the AWR can be enlarged by increasing the number of subarrays. The AWR employs a multi-beam phase array scanning technology, which has 4 transmission beams and 64 receiving beams covering an elevation angle between 0° and 90°. And meanwhile, a 360° azimuth is covered by mechanical scanning. One volume scanning time of the AWR is 12 s which are several tenths of the traditional Doppler weather radar. Each three adjacent subarrays work as a group, which performs collaborative scanning to ensure data time differences at the same spatial point from three adjacent subarrays are less than 2 s, and then correct flow fields can be synthesized by using radial velocity of the subarrays. This is a big progress in acquiring thermodynamic information and dynamic information of precipitation targets.One AWR consisting of three subarrays has been deployed at Changsha Airport and has acquired three-dimensional velocity and intensity (reflectivity factor) data, and more fine information of small-scale weather systems may be obtained by using data. There are still a lot of problems to be solved and a lot of works to be done in the field of the AWR technology and application.
  • Fig. 1  The structure of an array weather radar(AWR)

    Fig. 2  Deployment diagram and spatial detection schematic diagram of AWR consisting of three transmit-receive subarrays

    (a)deployment and detection range, (b)three-dimensional fine spatial detection

    Fig. 3  AWR deployment schematic diagram in Beijing

    Fig. 4  Beam schematic diagram of a three-dimensional detection mode

    (a)transmitting beam, (b)receiving beam

    Fig. 5  Scan sequence diagram of six three-dimensional detection subzones

    Fig. 6  AWR deployment diagram at Changsha Airport

    Fig. 7  No.1 subarray on the top of an iron tower at Changsha Airport

    Fig. 8  Calculated wind field (the barb) and intensity of precipitation echo data (the shaded) acquired by the AWR deployed at Changsha Airport from 1000 m to 4000 m height at 1522 BT 22 Apr 2018

    Fig. 9  Intensity data acquired by the 2nd subarray of the AWR with 21° elevation deployed at Changsha Airport during a rain process at 1820 BT 20 May 2018

    (distance ranges from the center to outer circles are 3 km, 10 km and 20.28 km, respectively)

    Table  1  Main technical indicators of AWR

    名称 主要技术指标
    技术体制 全固态、全相参、一维相控阵、多普勒
    工作频段 X波段
    收发子阵间距 20~60 km
    距离分辨率 50 m
    方位分辨率 1.6°
    俯仰分辨率 1.6°
    强度 15~70 dBZ
    速度 -32~32 m·s-1
    谱宽 0~16 m·s-1
    天线扫描方式及范围(方位) 0°~360°(机械扫描)
    天线扫描方式及范围(俯仰) 0°~90°(电扫描)
    强回波模式三维子区探测时间 2 s (方位60°,俯仰90°)
    普通模式三维子区探测时间 12 s (方位360°,俯仰90°)
    天线口径 1.2 m×1.2 m
    发射峰值功率 不小于320 W
    脉冲宽度 4,20 μs
    噪声系数 3 dB
    电源 单相,交流电220 V/50 Hz
    连续工作 可24 h连续工作
    环境要求(温度) 工作:-25~+50℃; 贮存:-40~+60℃
    质量 300 kg
    DownLoad: Download CSV

    Table  2  Group synchronous scanning sequence

    6个三维探测子区分组同步扫描收发子阵 10个三维探测子区分组同步扫描收发子阵 14个三维探测子区分组同步扫描收发子阵
    A,B,C A,B,C;F,J,G A,B,C;F,J,G;E,D,K
    A,C,D A,C,D;F,E,H A,C,D;F,E,H
    A,D,E A,D,E;F,H,I A,D,E;F,H,I
    A,E,F A,E,F A,E,F;H,L,M
    A,F,G A,F,G A,F,G;E,L,H
    A,G,B A,G,B;F,I,J A,G,B;F,I,J;E,K,L
    DownLoad: Download CSV
  • [1]
    Rycroft M.The atmospheric sciences entering the twenty-first century:National research council.Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(2):152-153.
    [2]
    Junyent F, Chandrasekar V, McLaughlin D, et al.The CASA integrated project 1 networked radar system.J Atmos Oceanic Technol, 2010, 27(1):61-78. doi:  10.1175/2009JTECHA1296.1
    [3]
    McLaughlin D J, Chandrasekar V K, Droegemeier K, et al.Distributed Collaborative Adaptive Sensing (DCAS) for Improved Detection, Understanding, and Prediction of Atmospheric Hazards.Ninth Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface.American Meteorological Society, 2005.
    [4]
    Philips B, Pepyne D, Westbrook D, et al.Integrating end user needs into system design and operation:The center for collaborative adaptive sensing of the atmosphere (CASA).Chemistry & Biodiversity, 2007, 1(11):1829-1841. https://www.researchgate.net/publication/228852952_Integrating_end_user_needs_into_system_design_and_operation_the_Center_for_Collaborative_Adaptive_Sensing_of_the_Atmosphere_CASA
    [5]
    陈洪滨, 李兆明, 段树, 等.天气雷达网络的进展.遥感技术与应用, 2012, 27(4):4487-495. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201204001
    [6]
    Nitin B, Chandrasekar V, Junyent F.Signal processing system for the CASA integrated project I radars.J Atmos Oceanic Technol, 2010, 27(9):1440-1460. doi:  10.1175/2010JTECHA1415.1
    [7]
    Brotzge J A, Zink M, Preston M, et al.CASA's First Test Bed: Integrated Project 1(IP1).32nd Conference on Radar Meteorology, American Meteorological Society, 2005.
    [8]
    Chandrasekar V, McLaughlin D, Brotzge J, et al.Distributed Collaborative Adaptive Radar Network: Preliminary Results from the CASA IP1 Testbed.IEEE Radar Conference, 2008. https://ieeexplore.ieee.org/document/4721125?arnumber=4721125&contentType=Conference%20Publications
    [9]
    Brotzge J, Droegemeier K, McLaughlin D.Collaborative adaptive sensing of the atmosphere (CASA):A new radar system for improving analysis and forecasting of surface weather conditions.Transportation Research Record, 2006, 1948:145-151. doi:  10.3141/1948-16
    [10]
    李思腾, 陈洪滨, 马舒庆, 等.网络化天气雷达协同自适应观测技术的实现.气象科技, 2016, 44(4):517-527. doi:  10.3969/j.issn.1671-6345.2016.04.001
    [11]
    William E B, Torok G, Weber M, et al.Progress of Multifunction Phased Array Radar (MPAR) Program.25th Conference on International Interactive Information and Processing Systems (ⅡPS) for Meteorology, Oceanography, and Hydrology, 2009. https://www.ofcm.gov/groups/MPAR/references/AMS%2009.pdf
    [12]
    Wu T, Takayanagi Y, Yoshida S, et al.Spatial relationship between lightning narrow bipolar events and parent thunderstorms as revealed by phased array radar.Geophys Res Lett, 2013, 40(3):618-623. doi:  10.1002/grl.50112
    [13]
    Adachi T, Kusunoki K, Yoshida S, et al.High-speed volumetric observation of a wet microburst using X-Band phased array weather radar in Japan.Mon Wea Rev, 2016, 144(10):3749-3765. doi:  10.1175/MWR-D-16-0125.1
    [14]
    Adachi T, Kusunoki K, Yoshida S, et al.Rapid volumetric growth of misocyclone and vault-like structure in horizontal shear observed by phased array weather radar.Sola, 2016, 12:314-319. doi:  10.2151/sola.2016-061
    [15]
    Yoshida S, Adachi T, Kusunoki K, et al.Relationship between thunderstorm electrification and storm kinetics revealed by phased array weather radar.J Geophys Res, 2017, 122(7):3821-3836. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af997b289fd2e0e7ecc115d1ba55c004
    [16]
    张培昌, 王振会.大气微博遥感基础.北京:气象出版社, 1995.
    [17]
    刘黎平, 吴翀, 汪旭东, 等.X波段一维扫描有源相控阵天气雷达测试定标方法.应用气象学报, 2015, 26(2):129-140. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150201&flag=1
    [18]
    吴翀, 刘黎平, 汪旭东, 等.相控阵雷达扫描方式对回波强度测量的影响.应用气象学报, 2014, 25(4):406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003
    [19]
    杨金红, 高玉春, 程明虎, 等.相控阵天气雷达波束特性.应用气象学报, 2009, 20(1):119-123. doi:  10.3969/j.issn.1001-7313.2009.01.016
    [20]
    郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150601&flag=1
    [21]
    黄先香, 俞小鼎, 炎利军, 等.广东两次台风龙卷的环境背景和雷达回波对比.应用气象学报, 2018, 29(1):70-83. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180107&flag=1
    [22]
    陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2016, 27(3):334-341. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160308&flag=1
    [23]
    毕宝贵, 代刊, 王毅, 等.定量降水预报技术进展.应用气象学报, 2016, 27(5):534-549. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160503&flag=1
    [24]
    杨洪平, 张沛源, 程明虎, 等.多普勒天气雷达组网拼图有效数据区域分析.应用气象学报, 2009, 20(1):47-55. doi:  10.3969/j.issn.1001-7313.2009.01.006
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(2)

    Article views (4108) PDF downloads(325) Cited by()
    • Received : 2018-09-07
    • Accepted : 2018-12-12
    • Published : 2019-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint