Wang Peijuan, Huo Zhiguo, Yang Jianying, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24. DOI:  10.11898/1001-7313.20190102.
Citation: Wang Peijuan, Huo Zhiguo, Yang Jianying, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24. DOI:  10.11898/1001-7313.20190102.

Indicators of Chilling Damage for Spring Maize Based on Heat Index in Northeast China

DOI: 10.11898/1001-7313.20190102
  • Received Date: 2018-09-05
  • Rev Recd Date: 2018-10-12
  • Publish Date: 2019-01-31
  • Chilling damage is one of the most destructive disasters for spring maize in Northeast China (Heilongjiang Province, Jilin Province, and Liaoning Province). Proper indicators of spring maize chilling damage are important for understanding the spatio-temporal distribution characteristics of disaster, dynamic monitoring, early warning, and conducting risk assessment. Therefore, it is of great scientific significance for the safe production and reasonable spatial planting of spring maize in China. Daily time series of air temperature during the past 55 years (1961-2015) at 82 meteorological stations, phenology at different developmental stages of spring maize from 1981 to 2013 at 61 agro-meteorological stations, and historical chilling damage records during the past 55 years (1961-2015) are jointly used to establish chilling damage indicators of spring maize at different developmental stages. The heat index with significant biological basis is selected as a factor, and its average at different developmental stages of spring maize is calculated based on three physiological temperatures. And then, 15 heat index sets of spring maize chilling damage samples collected from historical disaster records are built in the context of the combinations of five developmental stages of spring maize (seedling to clover, clover to jointing, jointing to blossom, blossom to milk, milk to physiological maturity) and three chilling damage levels (light, moderate, and severe). Kolmogorov-Smirnov (K-S) test method is used in checking the best distribution fitting functions of the heat index sets, and 15 normal distribution functions are established by comparing three fitting functions, including normal distribution, exponent distribution, and evenly distribution. Each critical threshold of spring maize chilling damage levels at different developmental stages is determined by using the upper limit of 95% confidence interval. The rationality of the spring maize chilling damage indicator is validated by using 25 independent samples. Results show that the verification based on the spring maize chilling damage level indicators is detected to be basically consistent with historical records, with 80% assessment being thoroughly consistent and all the errors of validation samples being within one level. Meanwhile, consistent rates of chilling damage indicators for three chilling damage levels are all above 75%.
  • Fig. 1  The spatial distribution of meteorological stations and agro-meteorological stations in the target area

    Fig. 2  Daily heat index difference for spring maize with chilling or chilling-free damages at three typical stations in Northeast China

    Fig. 3  Accumulated heat index difference for spring maize with chilling or chilling-free damages at three typical stations in Northeast China

    Table  1  Three physiological temperatures at different developmental stages of spring maize under high-yielding conditions

    生育时段 生育阶段 简称 T1/℃ T2/℃ T0/℃
    营养生长期 出苗-三叶期 S1 8.0 27.0 20.0
    三叶-拔节期 S2 11.5 30.0 24.5
    营养生长与生殖生长并进期 拔节-开花期 S3 14.0 33.0 27.0
    生殖生长期 开花-乳熟期 S4 14.0 32.0 25.5
    乳熟-成熟期 S5 10.0 30.0 19.0
    DownLoad: Download CSV

    Table  2  The information of chilling damage samples at different developmental stages of spring maize

    生育阶段 轻度冷害样本量 中度冷害样本量 重度冷害样本量
    指标构建 指标验证 指标构建 指标验证 指标构建 指标验证
    S1 11 2 17 1 37 2
    S2 31 1 24 3 26 3
    S3 11 1 8 1 14 1
    S4 40 3 50 1 20 1
    S5 36 2 27 1 15 2
    DownLoad: Download CSV

    Table  3  The information of chilling damage samples for spring maize in different decades

    时段 指标构建样本 指标验证样本
    轻度冷害 中度冷害 重度冷害
    1961—1970年 27 1 18 5
    1971—1980年 54 12 61 5
    1981—1990年 20 42 18 8
    1991—2000年 18 23 14 2
    2001—2015年 10 18 1 5
    DownLoad: Download CSV

    Table  4  Statistical characteristics of average heat index for modeling samples of spring maize chilling damage

    生育阶段 冷害等级 样本量 平均热量指数 标准差 最小热量指数 最大热量指数
    轻度 11 64.08 10.46 36.72 72.19
    S1 中度 17 58.42 10.43 39.18 73.47
    重度 37 51.78 11.81 25.25 75.48
    轻度 31 67.06 5.95 56.98 77.05
    S2 中度 24 61.42 8.08 41.82 80.10
    重度 26 52.12 11.44 27.35 72.04
    轻度 11 73.11 4.18 66.59 81.76
    S3 中度 8 64.76 4.71 56.01 70.26
    重度 14 57.53 7.66 43.69 70.97
    轻度 40 71.56 10.09 50.79 85.57
    S4 中度 20 64.60 8.20 50.62 76.60
    重度 20 59.10 8.62 42.12 69.97
    轻度 36 69.29 8.38 50.90 86.63
    S5 中度 27 64.13 6.40 50.18 75.58
    重度 15 58.21 7.06 46.64 76.80
    DownLoad: Download CSV

    Table  5  K-S test results of heat index for chilling damage samples of spring maize based on different distribution functions

    生育阶段 冷害等级 显著性检验
    正态分布 均匀分布 指数分布
    轻度 0.628 0.008 0.009
    S1 中度 0.977 0.798 0.001
    重度 0.633 0.267 0.000
    轻度 0.926 0.990 0.000
    S2 中度 0.895 0.096 0.000
    重度 0.981 0.185 0.000
    轻度 0.947 0.700 0.001
    S3 中度 0.888 0.440 0.009
    重度 0.760 0.953 0.001
    轻度 0.603 0.076 0.000
    S4 中度 0.416 0.307 0.000
    重度 0.623 0.204 0.000
    轻度 0.912 0.226 0.000
    S5 中度 0.829 0.386 0.000
    重度 0.790 0.026 0.000
    DownLoad: Download CSV

    Table  6  95% confidence ranges of heat index at different developmental stages for spring maize at different chilling damage levels

    生育阶段 轻度冷害 中度冷害 重度冷害
    S1 57.1~71.1 53.1~63.8 47.8~55.7
    S2 64.9~69.2 58.0~64.8 47.5~56.7
    S3 70.3~75.9 60.8~68.7 53.1~61.9
    S4 68.3~74.8 60.8~68.4 55.1~63.1
    S5 66.5~72.1 61.6~66.7 54.3~62.1
    DownLoad: Download CSV

    Table  7  Chilling damage indicators for spring maize at different developmental stages based on heat index

    生育阶段 重度冷害 中度冷害 轻度冷害 无冷害
    S1 [0, 55.5] (55.5, 64.0] (64.0, 71.0] (71.0, 100]
    S2 [0, 56.5] (56.5, 65.0] (65.0, 69.0] (69.0, 100]
    S3 [0, 62.0] (62.0, 68.5] (68.5, 76.0] (76.0, 100]
    S4 [0, 63.0] (63.0, 68.5] (68.5, 75.0] (75.0, 100]
    S5 [0, 62.0] (62.0, 66.5] (66.5, 72.0] (72.0, 100]
    DownLoad: Download CSV

    Table  8  Validation of chilling damage indicators for spring maize in Northeast China

    生育阶段 轻度冷害 中度冷害 重度冷害 准确率/%
    总样本量 验证正确量 总样本量 验证正确量 总样本量 验证正确量
    S1 2 2 1 1 2 0 60.0
    S2 1 1 3 3 3 3 100.0
    S3 1 1 1 1 1 1 100.0
    S4 3 2 1 1 1 1 80.0
    S5 2 1 1 0 2 2 60.0
    DownLoad: Download CSV

    Table  9  Day ratios with chilling or chilling-free damages for spring maize at different developmental stages of three typical stations in Northeast China (unit:%)

    站点 生育阶段 生育阶段日数 2007年 1969年
    轻度 中度 重度 轻度 中度 重度
    S1 8 d 25.0 25.0 12.5 12.5 0.0 87.5
    S2 37 d 2.7 0.0 8.1 8.1 13.5 35.1
    海伦 S3 21 d 14.3 0.0 19.0 23.8 14.3 9.5
    S4 29 d 6.9 6.9 3.4 10.3 27.6 27.6
    S5 28 d 3.6 3.6 7.1 0.0 7.1 32.1
    S1 9 d 0.0 11.1 22.2 22.2 22.2 33.3
    S2 38 d 5.3 7.9 10.5 7.9 5.3 42.1
    扶余 S3 24 d 8.3 8.3 4.2 4.2 0.0 8.3
    S4 26 d 0.0 0.0 0.0 7.7 0.0 3.8
    S5 29 d 0.0 3.4 0.0 6.9 0.0 13.8
    S1 8 d 0.0 0.0 0.0 25.0 0.0 50.0
    S2 39 d 7.7 7.7 2.6 7.7 2.6 35.9
    抚顺 S3 25 d 24.0 4.0 4.0 8.0 4.0 4.0
    S4 28 d 0.0 0.0 0.0 0.0 0.0 0.0
    S5 26 d 0.0 0.0 0.0 3.8 0.0 3.8
    DownLoad: Download CSV
  • [1]
    中华人民共和国国家统计局.中国统计年鉴(2017).北京:中国统计出版社, 2017.
    [2]
    杨菲云, 郭建平, 马树庆, 等.QX/T167-2012北方春玉米冷害评估技术规范行业标准.北京:气象出版社, 2012.
    [3]
    Miedema P.The effects of low temperature on Zea mays.Advances in Agronomy, 1982, 35:93-128. doi:  10.1016/S0065-2113(08)60322-3
    [4]
    郭春明, 任景全, 曹铁华, 等.春玉米穗分化期低温对产量构成因素的影响.应用气象学报, 2018, 29(4):505-512. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180411&flag=1
    [5]
    马树庆, 王琪, 王春乙, 等.东北地区玉米低温冷害气候和经济损失风险分区.地理研究, 2008, 27(5):1169-1177. doi:  10.3321/j.issn:1000-0585.2008.05.020
    [6]
    郭建平, 田志会, 张涓涓.东北地区玉米热量指数的预测模型研究.应用气象学报, 2003, 14(5):626-633. doi:  10.3969/j.issn.1001-7313.2003.05.013
    [7]
    高晓容, 王春乙, 张继权, 等.东北地区玉米主要气象灾害风险评价与区划.中国农业科学, 2014, 47(24):4805-4820. doi:  10.3864/j.issn.0578-1752.2014.24.004
    [8]
    初征, 郭建平.未来气候变化对东北玉米品种布局的影响.应用气象学报, 2018, 29(2):165-176. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180204&flag=1
    [9]
    赵俊芳, 杨晓光, 刘志娟.气候变暖对东北三省春玉米严重低温冷害及种植布局的影响.生态学报, 2009, 29(12):6544-6551. doi:  10.3321/j.issn:1000-0933.2009.12.029
    [10]
    张梦婷, 刘志娟, 杨晓光, 等.气候变化背景下中国主要作物农业气象灾害时空分布特征:东北春玉米延迟型冷害.中国农业气象, 2016, 37(5):599-610. doi:  10.3969/j.issn.1000-6362.2016.05.012
    [11]
    朱红蕊, 刘赫男, 张洪玲, 等.黑龙江省玉米低温冷害风险评估及预估.气候变化研究进展, 2015, 11(3):173-178. doi:  10.3969/j.issn.1673-1719.2015.03.003
    [12]
    中国气象局.QX/167-2012.北方春玉米冷害评估技术规范.北京:气象出版社, 2012.
    [13]
    杜春英, 姜丽霞, 朱海霞, 等.基于积温距平的玉米冷害动态评估及其与玉米产量的关系.灾害学, 2016, 31(4):42-48. doi:  10.3969/j.issn.1000-811X.2016.04.008
    [14]
    侯琼, 王海梅, 云文丽.河套灌区玉米低温冷害监测评估指标的研究.干旱区资源与环境, 2015, 29(2):179-184. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201502030
    [15]
    陈凯奇, 米娜.辽宁省玉米低温冷害和霜冻灾害风险评估.气象与环境学报, 2016, 32(1):89-94. http://d.old.wanfangdata.com.cn/Periodical/lnqx201601013
    [16]
    李蕊, 郭建平.东北春玉米积温模型的改进与比较.应用气象学报, 2017, 28(6):678-689. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170604&flag=1
    [17]
    李蕊, 郭建平.东北春玉米非线性积温模型参数改进.应用气象学报, 2018, 29(2):154-164. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180203&flag=1
    [18]
    唐余学, 郭建平.我国东北地区玉米冷害风险评估.应用气象学报, 2016, 27(3):352-360. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160310&flag=1
    [19]
    王春乙.东北地区农作物低温冷害研究.北京:气象出版社, 2008.
    [20]
    高素华.玉米延迟型低温冷害的动态监测.自然灾害学报, 2003, 12(2):117-121. doi:  10.3969/j.issn.1004-4574.2003.02.021
    [21]
    刘布春, 王石立, 庄立伟, 等.基于东北玉米区域动力模型的低温冷害预报应用研究.应用气象学报, 2003, 14(5):616-625. doi:  10.3969/j.issn.1001-7313.2003.05.012
    [22]
    杨若子, 周广胜.1961-2013年东北三省玉米低温冷害强度的时空分布特征.生态学报, 2016, 36(14):4386-4394. http://d.old.wanfangdata.com.cn/Periodical/stxb201614018
    [23]
    吕厚荃.中国主要农区重大农业气象灾害演变及其影响评估.北京:气象出版社, 2011.
    [24]
    蔡菁菁, 王春乙, 张继权.东北地区玉米不同生长阶段干旱冷害危险性评价.气象学报, 2013, 71(5):976-986. http://d.old.wanfangdata.com.cn/Periodical/qxxb201305015
    [25]
    马树庆, 刘玉英, 王琪.玉米低温冷害动态评估和预测方法.应用生态学报, 2006, 17(10):1905-1910. doi:  10.3321/j.issn:1001-9332.2006.10.025
    [26]
    李祎君, 王春乙.东北地区玉米低温冷害综合指标研究.自然灾害学报, 2007, 16(6):15-20. doi:  10.3969/j.issn.1004-4574.2007.06.003
    [27]
    温克刚.中国气象灾害大典(辽宁卷).北京:气象出版社, 2005.
    [28]
    温克刚.中国气象灾害大典(吉林卷).北京:气象出版社, 2008.
    [29]
    温克刚.中国气象灾害大典(黑龙江卷).北京:气象出版社, 2007.
    [30]
    中国气象局.中国气象灾害年鉴.北京:气象出版社, 2005-2014.
    [31]
    Massey E J.The Kolmogorov-Smirnov test of goodness of fit.J Am Stat Assoc, 1951, 46:68-78. doi:  10.1080/01621459.1951.10500769
    [32]
    霍治国, 李世奎, 王素艳, 等.主要农业气象灾害风险评估技术及其应用研究.自然资源学报, 2003, 18(6):692-703. doi:  10.3321/j.issn:1000-3037.2003.06.007
    [33]
    盛骤, 谢式千, 潘承毅.概率论与数理统计.北京:高等教育出版社, 1989.
    [34]
    Wu X, Wang P J, Huo Z G.et al.Crop drought identification index for winter wheat based on evapotranspiration in the Huang-Huai-Hai Plain, China.Agriculture, Ecosystems and Environment, 2018, 263:18-30. doi:  10.1016/j.agee.2018.05.001
    [35]
    郭建平, 庄立伟, 陈玥熤.东北玉米热量指数预测方法研究(Ⅰ)——热量指数与玉米产量.灾害学, 2009, 24(4):6-10. doi:  10.3969/j.issn.1004-4574.2009.04.002
    [36]
    Yang J Y, Huo Z G, Wu L, et al.Indictor-based evaluation of spatiotemporal characteristics of rice flood in Southwest China.Agriculture, Ecosystems and Environment, 2016, 230:221-230. doi:  10.1016/j.agee.2016.06.008
    [37]
    汪天颖, 霍治国, 李旭辉, 等.基于生育时段的湖南省早稻洪涝等级指标及时空变化特征.生态学杂志, 2016, 35(3):709-718. http://d.old.wanfangdata.com.cn/Periodical/stxzz201603020
    [38]
    张桂香, 霍治国, 杨建莹, 等.江淮地区夏玉米涝渍灾害时空分布特征和风险分析.生态学杂志, 2017, 36(3):747-756. http://d.old.wanfangdata.com.cn/Periodical/stxzz201703024
    [39]
    杨宏毅, 霍治国, 杨建莹, 等.江汉和江南西部春玉米涝渍指标及风险评估.应用气象学报, 2017, 28(2):237-246. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170211&flag=1
    [40]
    郭建平, 马树庆.农作物低温冷害监测预测理论和实践.北京:气象出版社, 2009.
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(9)

    Article views (5445) PDF downloads(238) Cited by()
    • Received : 2018-09-05
    • Accepted : 2018-10-12
    • Published : 2019-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint