Zeng Xiaoqing, Xue Feng, Yao Li, et al. Comparative study of different error correction methods on model output wind field. J Appl Meteor Sci, 2019, 30(1): 49-60. DOI:  10.11898/1001-7313.20190105.
Citation: Zeng Xiaoqing, Xue Feng, Yao Li, et al. Comparative study of different error correction methods on model output wind field. J Appl Meteor Sci, 2019, 30(1): 49-60. DOI:  10.11898/1001-7313.20190105.

Comparative Study of Different Error Correction Methods on Model Output Wind Field

DOI: 10.11898/1001-7313.20190105
  • Received Date: 2018-06-22
  • Rev Recd Date: 2018-10-11
  • Publish Date: 2019-01-31
  • The meshing forecast products is an important direction for the future development of China Meteorological Administration. With the development of the grid forecast business and approaching of Beijing Olympic Winter Games in 2022, the forecast of the wind is very important. In order to promptly correct forecast results using grid observation fusion products, grid forecasting products with higher resolution and accuracy are obtained, and the high-frequency grid wind fusion products generated by the HRCLDAS (High Resolution China Meteorological Administration Land Data Assimilation System) system of National Meteorological Information Center as observations are studied. Eight different error correction methods and two different wind field models are used to correct European Centre for Medium-Range Weather Forecasts (ECMWF) 10 m wind forecast field. The test sample time is selected from 1 January 2017 to 28 February 2017, and from 1 June 2017 to 31 July 2017, and two forecast simulations are conducted. In each trial, 24 h corrected forecast test is carried out for two start times at 1400 BT and 2000 BT, and eight different correction methods are used to correct the prediction of ECMWF 10 m wind forecast field. Grid forecast verification is performed on grid results. At the same time, grid prediction results from 8 corrected methods is interpolated to 2400 national surface meteorological stations and station forecast verification is performed on grid results. From the grid verification result and site verification result of two trials, using the latest observations as a predictor, wind forecast effects of 3-6 h is significantly improved. For the correction of the wind direction, the correction effects are slightly improved. Results show that the two-factor model with dynamic coefficient has the best correction effects on the average absolute error, accuracy and absolute error distribution frequency of both grid and site test. Sliding modeling allows the correction model to follow the trend of ECMWF 10 m wind forecast system error. After the optimal method is corrected, the wind speed error in most parts of South China, East China and North China is below 1 m·s-1, especially the large error is significantly reduced, and the wind direction error is also reduced. However, there are still some mean absolute error of 1-3 m·s-1 in the Qinghai-Tibet Plateau, central Xinjiang and Inner Mongolia. Due to local effects of the wind, the correction field of the interpolation to the site still has a certain gap with the actual situation of the site. If prediction result fusion technology is carried out, it is expected that there will be better grid prediction results.
  • Fig. 1  Comparison of mean absolute error for 8 corrected results in Test 1

    Fig. 2  Comparison of mean absolute error for 8 corrected results in Test 2

    Fig. 3  Comparison of average hit rate for 8 corrected results in Test 2

    Fig. 4  The grid absolute error frequency of 8 methods for 3 h forecast corrected filed in Test 2

    Fig. 5  The absolute error of 3 h forecast wind speed grid field in Test 2 (forecast started at 1400 BT, WS Model)

    Fig. 6  Comparison of site average absolute error for 8 corrected results in Test 1

    Fig. 7  Comparison of site average absolute error for 8 corrected results in Test 2

    Fig. 8  Comparison of site average hit rate for 8 corrected results in Test 2

    Fig. 9  The site absolute error frequency of 8 methods for 3 h forecast corrected field in Test 2

    Table  1  Comparison of eight correction methods

    方案序号 订正方案 模型样本选择 公式
    1 简单误差订正 随时间滑动(1 d) 式(2)
    2 加权误差订正 固定时间段(31 d) 式(3)
    3 回归误差订正 固定时间段(31 d) 式(4)
    4 MOS订正 固定时间段(31 d) 式(5)
    5 双因子MOS订正 固定时间段(31 d) 式(6)
    6 滚动误差订正 随预报时间滑动(31 d) 式(4)
    7 滚动MOS订正 随预报时间滑动(31 d) 式(5)
    8 双因子滚动MOS订正 随预报时间滑动(31 d) 式(6)
    DownLoad: Download CSV
  • [1]
    Richardson L F.Weather Prediction by Numerical Process.London: Cambridge University Press, Reprinted by Dover, 1922: 236.
    [2]
    张萌, 于海鹏, 黄建平, 等.GRAPES_GFS 2.0模式系统误差评估.应用气象学报, 2018, 29(5):571-583. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180506&flag=1
    [3]
    闵晶晶.BJ-RUC系统模式地面气象要素预报效果评估.应用气象学报, 2014, 25(3):265-273. doi:  10.3969/j.issn.1001-7313.2014.03.002
    [4]
    黄丽萍, 陈德辉, 邓莲堂, 等.GRAPES_Meso V4.0主要技术改进和预报效果检验.应用气象学报, 2017, 28(1):25-37. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170103&flag=1
    [5]
    许杨, 陈正洪, 杨宏青, 等.风电场风电功率短期预报方法比较.应用气象学报, 2013, 24(5):625-630. doi:  10.3969/j.issn.1001-7313.2013.05.012
    [6]
    陈豫英, 刘还珠, 陈楠, 等.基于聚类天气分型的KNN方法在风预报中的应用.应用气象学报, 2008, 19(5):564-572. doi:  10.3969/j.issn.1001-7313.2008.05.007
    [7]
    曾晓青, 赵声蓉, 段云霞.基于MOS方法的风向预测方案对比研究.气象与环境学报, 2013, 29(6):140-144. http://d.old.wanfangdata.com.cn/Periodical/lnqx201306022
    [8]
    王彬滨, 吴息, 余江, 等.谐波分析方法在沿海风速数值预报订正的应用.热带气象学报, 2016, 32(5):752-758. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201605018
    [9]
    石岚, 徐丽娜, 郝玉珠.基于风速高相关分区的风电场风速预报订正.应用气象学报, 2016, 27(4):506-512. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160414&flag=1
    [10]
    姚日升, 涂小萍, 蒋璐璐, 等.浙江近海冬季大风风速推算和ASCAT风速订正方法探讨.气象, 2016, 42(5):621-627. http://d.old.wanfangdata.com.cn/Periodical/qx201605012
    [11]
    胡海川, 黄彬, 魏晓琳.我国近海洋面10 m风速集合预报客观订正方.气象, 2017, 43(7):856-862. http://d.old.wanfangdata.com.cn/Periodical/qx201707009
    [12]
    韩帅, 师春香, 姜志伟, 等.CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展.气象科技进展, 2018, 8(1):102-108. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201801024
    [13]
    韩帅, 师春香, 姜立鹏, 等.CLDAS土壤湿度模拟结果及评估.应用气象学报, 2017, 28(3):369-378. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170310&flag=1
    [14]
    张涛, 苗春生, 王新.LAPS与STMAS地面气温融合效果对比试验.高原气象, 2014, 33(3):743-752. http://d.old.wanfangdata.com.cn/Periodical/gyqx201403016
    [15]
    Klein W H, Lewis B M, Enger I.Objective prediction of five-day mean temperatures during winter.Journal of Atmospheric Sciences, 1959, 16(6):672-682. doi:  10.1175/1520-0469%281959%29016%3C0672%3AOPOFDM%3E2.0.CO%3B2
    [16]
    Glahn H R, Lowry D A.The use of model output statistics (MOS) in objective weather forecasting.J Appl Meteor, 1972, 11(8):1203-1211. doi:  10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
    [17]
    吴启树, 韩美, 郭弘, 等.MOS温度预报中最优训练期方案.应用气象学报, 2016, 27(4):426-434. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160405&flag=1
    [18]
    刘还珠, 赵声蓉, 陆志善, 等.国家气象中心气象要素的客观预报——MOS系统.应用气象学报, 2004, 15(2):181-191. doi:  10.3969/j.issn.1001-7313.2004.02.006
    [19]
    车钦, 赵声蓉, 范广洲.华北地区极端温度MOS预报的季节划分.应用气象学报, 2011, 22(4):429-436. doi:  10.3969/j.issn.1001-7313.2011.04.005
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (4428) PDF downloads(241) Cited by()
    • Received : 2018-06-22
    • Accepted : 2018-10-11
    • Published : 2019-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint