Liu Yujue, Miao Shiguang, Liu Lei, et al. Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low-layer wind over complex terrain. J Appl Meteor Sci, 2019, 30(1): 70-81. DOI:  10.11898/1001-7313.20190107.
Citation: Liu Yujue, Miao Shiguang, Liu Lei, et al. Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low-layer wind over complex terrain. J Appl Meteor Sci, 2019, 30(1): 70-81. DOI:  10.11898/1001-7313.20190107.

Effects of a Modified Sub-grid-scale Terrain Parameterization Scheme on the Simulation of Low-layer Wind over Complex Terrain

DOI: 10.11898/1001-7313.20190107
  • Received Date: 2018-05-16
  • Rev Recd Date: 2018-08-10
  • Publish Date: 2019-01-31
  • Due to the limited representation of observation over complex terrain, high resolution model becomes a favorable tool. Fine numerical simulation of wind field is quite important for micro-siting wind farms and wind energy resources assessment, especially in the complex terrain area. The accuracy of low-layer wind simulation over mountain area is one of the difficulties and key points in the field of wind energy research. The state-of-the-art WRF (Weather Research and Forecasting) model is one of the most widely used mesoscale numerical weather models for wind energy assessment in recent years. However, effects of sub-grid-scale topographic shape on surface wind field are not considered. With the new WRF version 3.4.1, a sub-grid-scale terrain parameterization scheme named Jiménez scheme is added into the YSU (Yonsei University) planet boundary layer parameterization scheme. The Jiménez scheme is designed aiming to reduce the systematic error of wind speed overestimation over valleys or plains and underestimation over hills conversely. However, correction effects of original WRF simulated 10 m wind speed by Jiménez scheme show great differences under different horizontal resolutions, particularly when over high hills. A series of sensitive numerical experiments are carried out under windy days for the Taihang Mountains in the west of Beijing-Tianjin-Hebei area. The main purpose of these experiments is to address some of issues regarding Jiménez scheme and try to solve the existing problems by establishing a relationship between the key topographic parameter Ct and the model grid spacing(dx/dy) to fit different numerical simulation for high resolution based on secondly SRTM topographic dataset. The simulated 10 m wind speed results of WRF without Jiménez scheme, with original Jiménez scheme and modified Jiménez scheme version are compared with observations of 3 automatic weather stations during the MOUNTAOM (MOUNtain Terrain Atmospheric Observations and Modeling) campaign which is prepared for 2022 winter Olympic Games. Results show that the modified Jiménez scheme can partially correct the error of the original Jiménez scheme at lower and higher resolutions. The simulated 10 m wind speed near the ground by modified version is closer to the actual condition. The correction method for Jiménez sub-grid-scale terrain scheme can provide reference for high resolution wind simulations over complex terrain and help users to obtain more detailed information on the surface wind field for wind energy related researches and applications.
  • Fig. 1  Computational and analytical domains with the terrain elevation (the shadeded denotes terrain)

    (black frame denotes simulation domain, blue frame denotes Xiaohaituo mountain)

    Fig. 2  Analytical domain for Xiaohaituo Mountain (the shaded)

    (black dots denote automatic weather stations)

    Fig. 3  Ensenble averaged bias of 10 m wind speed of 3 cases (the shaded)(the contour denotes the terrain height, unit:m)

    (a)difference between T1_1 and T0_1, (b)difference between T1_2 and T0_2, (c)difference between T1_3 and T0_3

    Fig. 4  Ensemble averaged daily bias of simulated and observed 10 m wind speed at Xidazhuangke, Erhaituo and Xiaohaituo of T0 and T1 from 3 cases

    Fig. 5  Δ2h distribution of computational domain and Xiaohaituo Mountain with different resolutions (the shaded)(the contour denotes the terrain height, unit:m)

    Fig. 6  The distribution of 30 points in Xiaohaituo Mountain (the shaded denotes terrain)

    Fig. 7  The corresponding Δ2h values of 30 points at different resolutions

    Fig. 8  Ensenble averaged bias of 10 m wind speed of 3 cases in Xiaohaituo Mountain (the shaded) (the contour denotes the terrain height, unit:m)

    (a)difference between T1C_1 and T1_1, (b)difference between T1C_2 and T1_2, (c)difference between T1C_3 and T1_3

    Fig. 9  Ensemble averaged daily bias of simulated and observed 10 m wind speed at Xidazhuangke, Erhaituo and Xiaohaituo of T1C and T1 from 3 cases

    Table  1  Schemes of different experiments

    试验组名称 试验名称 水平分辨率 时间积分步长/s 次网格地形方案
    T0_1 3 km×3 km 18
    T0 T0_2 1 km×1 km 6
    T0_3 333 m×333 m 2
    T1_1 3 km×3 km 18 Jiménez方案
    T1 T1_2 1 km×1 km 6 Jiménez方案
    T1_3 333 m×333 m 2 Jiménez方案
    T1C_1 3 km×3 km 18 修正Jiménez方案
    T1C T1C_2 1 km×1 km 6 修正Jiménez方案
    T1C_3 333 m×333 m 2 修正Jiménez方案
    DownLoad: Download CSV

    Table  2  Statistic results of simulated 10 m wind speed (unit:m·s-1)

    试验 平均偏差 均方根误差
    西大庄科站 二海陀站 小海陀站 西大庄科站 二海陀站 小海陀站
    T0_1 4.057 -0.411 -1.791 1.860 2.626 3.098
    T0_2 1.270 -2.103 -3.955 2.499 2.136 2.473
    T0_3 0.744 -1.838 -0.248 1.873 2.850 3.433
    T1_1 5.813 1.191 0.420 2.497 2.021 2.458
    T1_2 -0.461 1.062 -2.118 1.764 2.042 1.746
    T1_3 -0.742 -3.506 -2.598 1.811 3.820 4.108
    T1C_1 3.135 -0.588 -0.392 1.776 2.391 2.689
    T1C_2 0.055 0.129 -1.200 1.644 1.565 1.591
    T1C_3 0.279 -0.639 -0.016 1.300 1.583 1.791
    DownLoad: Download CSV
  • [1]
    朱蓉, 何晓凤, 周荣卫, 等.风能资源评估技术进展及中国发展现状//全国工业空气动力学学术会议, 2009: 66-78. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7826257
    [2]
    朱蓉, 何晓凤, 周荣卫, 等.区域风能资源的数值模拟评估方法.风能, 2010(4):52-56. http://d.old.wanfangdata.com.cn/Periodical/fengn201006016
    [3]
    刘郁珏, 李军, 胡非, 等.一种考虑海拔高度的风速测量相关推测法.应用气象学报, 2013, 24(1):109-116. doi:  10.3969/j.issn.1001-7313.2013.01.011
    [4]
    Whiteman C.Mountain meteorology:Fundamentals and applications.Mountain Research & Development, 2000, 21(2):200-201. http://d.old.wanfangdata.com.cn/Periodical/nmgsyhg200824059
    [5]
    李磊, 张立杰, 张宁, 等.FLUENT在复杂地形风场精细模拟中的应用研究.高原气象, 2010, 29(3):621-628. http://d.old.wanfangdata.com.cn/Periodical/gyqx201003010
    [6]
    穆海振, 徐家良, 柯晓新, 等.高分辨率数值模式在风能资源评估中的应用初探.应用气象学报, 2006, 17(2):152-159. doi:  10.3969/j.issn.1001-7313.2006.02.004
    [7]
    许杨, 陈正洪, 杨宏青, 等.风电场风电功率短期预报方法比较.应用气象学报, 2013, 24(5):625-630. doi:  10.3969/j.issn.1001-7313.2013.05.012
    [8]
    Skamarock W, Klemp J.A time-split nonhydrostatic atmospheric model for weather research and forecasting applications.Journal of Computational Physics, 2008, 227(7):3465-3485. doi:  10.1016/j.jcp.2007.01.037
    [9]
    徐晶晶, 胡非, 肖子牛, 等.风能模式预报的相似误差订正.应用气象学报, 2013, 24(6):731-740. doi:  10.3969/j.issn.1001-7313.2013.06.010
    [10]
    方艳莹, 徐海明, 朱蓉, 等.基于WRF和CFD软件结合的风能资源数值模拟试验研究.气象, 2012, 38(11):1378-1389. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205756355
    [11]
    苗世光, 孙桂平, 马艳, 等.青岛奥帆赛高分辨率数值模式系统研制与应用.应用气象学报, 2009, 20(3):370-379. doi:  10.3969/j.issn.1001-7313.2009.03.015
    [12]
    杨薇, 苗峻峰, 谈哲敏.太湖地区湖陆风对雷暴过程影响的数值模拟.应用气象学报, 2014, 25(1):59-70. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140107&flag=1
    [13]
    王麟.WRF模式在云南省风能资源评估中的适用性研究.昆明:云南大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2694859
    [14]
    刘桂艳, 高山红, 王永明, 等.台风外围下沉区大气波导成因的数值模拟.应用气象学报, 2012, 23(1):77-88. doi:  10.3969/j.issn.1001-7313.2012.01.009
    [15]
    徐敬, 马志强, 赵秀娟, 等.边界层方案对华北低层O3垂直分布模拟的影响.应用气象学报, 2015, 26(5):567-577. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150506&flag=1
    [16]
    马文通, 朱蓉, 李泽椿, 等.基于CFD动力降尺度的复杂地形风电场风电功率短期预测方法研究.气象学报, 2016, 74(1):89-102. http://d.old.wanfangdata.com.cn/Periodical/qxxb201601007
    [17]
    Wyngaard J C.Toward numerical modeling in the "terra incognita".J Atmos Sci, 2004, 61:1816-1826. doi:  10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2
    [18]
    Henckes P, Knaut A, Obermüller F, et al.The benefit of long-term high resolution wind data for electricity system analysis.Energy, 2018, 143:934-942. doi:  10.1016/j.energy.2017.10.049
    [19]
    Cheng W, Steenburgh W.Evaluation of surface sensible weather forecasts by the WRF and the eta models over the Western United States.Wea Forecasting, 2015, 20(5):812-821. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21c0fe54d4e4dec568cbf81a3322f48a
    [20]
    Roux G, Liu Y, Monache L, et al.Verification of High-resolution WRF-RTFDDA Surface Forcasts over Mountains and Plains.10th WRF Users' Workshop, 2009: 20-23. http://www2.mmm.ucar.edu/wrf/users/workshops/WS2009/abstracts/5B-05.pdf
    [21]
    Mass C, Ovens D.WRF Model Physcis: Problems, Solutions, and a New Paradigm for Progress//Preprints, 2010 WRF Users' Workshop, 2010.
    [22]
    Mass C.Improved Subgrid Drag of Hyper PBL Vertical Resolution? Dealing with the Stable PBL Problems in WRF.WRF Users' Workshop, 2012.
    [23]
    Mass C.Fixing WRF's High Speed Wind Bias: A New Subgrid Scale Drag Parameterization and the Role of Detailed Verification//Preprints, 24th Conf on Weather and Forcasting/20th Conf on Numerical Weather Prediction.2011.
    [24]
    Shimada S, Ohsawa T.Accuracy and characteristics of offshore wind speeds simulated by WRF.Scientific Online Letters on the Atmosphere Sola, 2011, 7(1):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_1927402
    [25]
    Jiménez P, Dudhia J.Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model.Journal of Applied Meteorology & Climatology, 2012, 51(2):300-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1c2423cb4a8c079435f184d2d926173
    [26]
    Jiménez P, Dudhia J.On the ability of the WRF model to reproduce the surface wind direction over complex terrain.Journal of Applied Meteorology & Climatology, 2013, 52(7):1610-1617. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60dc4a4c62a000e32a19e0bb4b0ae88e
    [27]
    郑亦佳, 刘树华, 缪育聪, 等.YSU边界层参数化方案中不同地形订正方法对地面风速及温度模拟的影响.地球物理学报, 2016, 59(3):803-815. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603004.htm
    [28]
    杨鹏武, 王学锋, 王麟, 等.WRF_TopoWind模式对中国低纬高原高山风速模拟的适用性研究.云南大学学报(自然科学版), 2016, 38(5):766-772. http://d.old.wanfangdata.com.cn/Periodical/yndxxb201605012
    [29]
    马晨晨, 余晔, 何建军, 等, 次网格地形参数化对WRF模式在复杂地形区风场模拟的影响.干旱气象, 2016, 34(1):96-105. http://d.old.wanfangdata.com.cn/Periodical/ghqx201601013
    [30]
    张亦洲, 苗世光, 李青春, 等.北京城市下垫面对雾影响的数值模拟研究.地球物理学报, 2017, 60(1):22-36. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701004.htm
    [31]
    Hong S Y, Noh Y, Dudhia J.A new vertical diffusion package with an explicit treatment of entrainment processes.Mon Wea Rev, 2006, 134:2318-2341. doi:  10.1175/MWR3199.1
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(2)

    Article views (3388) PDF downloads(216) Cited by()
    • Received : 2018-05-16
    • Accepted : 2018-08-10
    • Published : 2019-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint