Huang Yao, Xiao Tiangui, Jin Ronghua. Effects of low-frequency oscillation on the persistent extreme precipitation in Sichuan Basin. J Appl Meteor Sci, 2019, 30(1): 93-104. DOI:  10.11898/1001-7313.20190109.
Citation: Huang Yao, Xiao Tiangui, Jin Ronghua. Effects of low-frequency oscillation on the persistent extreme precipitation in Sichuan Basin. J Appl Meteor Sci, 2019, 30(1): 93-104. DOI:  10.11898/1001-7313.20190109.

Effects of Low-frequency Oscillation on the Persistent Extreme Precipitation in Sichuan Basin

DOI: 10.11898/1001-7313.20190109
  • Received Date: 2018-09-14
  • Rev Recd Date: 2018-11-05
  • Publish Date: 2019-01-31
  • Based on precipitation data of surface meteorological stations and NCEP/NCAR reanalysis data during 1981-2016, the persistent extreme precipitation is defined for Sichuan Basin, and 15-30-day low-frequency oscillation characteristics of precipitation and atmosphere are analyzed in detail by means of wavelet analysis, synthetic analysis and Butterworth filtering, which provide theoretical basis and reference for extended period forecast.Results show that persistent extreme precipitations in Sichuan Basin are concentrated from June to September, which generally last for 3 days. The precipitation has low-frequency oscillation characteristics of 15-30 days and 30-60 days, and mainly 15-30-day oscillation. During the precipitation, the South Asia high and upper jet form a high-level divergence field, the subtropical high is strong and extends westward, the low pressure in the Lake Baikal and the Sea of Okhotsk extends southward, and the airflow in South China Sea and the airflow in the west side of subtropical high converge and pass northward. During the precipitation, low-frequency systems in each height layer and each latitude cooperate with each other in three-dimension space to form a low-frequency circulation which is favorable for precipitation. The vertical baroclinicity of the low-frequency system is conducive to the accumulation of unstable energy and provides energy conditions for precipitation.In the low-frequency flow field, during the precipitation period, the low-level and middle-level north-south airflows merge into the basin to form a convergence area, and the upper layer appears as a northerly wind. The low-latitude cyclone in the lower layer is generated in the western Pacific Ocean and gradually moves northwestward to the South China Sea to bring warm and humid airflow. The southeast side of the mid-high-latitude Lake Baikal generates a cyclone which then moves eastward to the vicinity of the Okhotsk Sea to enhance the northerly wind transport. The mid-high-latitude Eurasia low-pressure center in the middle layer corresponds to the transverse trough in the polar region of the original field. With the transverse trough turning vertical, the center of the low-pressure moves to the southeast, arriving at Mongolia in precipitation, and splits the small trough to the downstream, strengthening in the Sea of Japan, followed by the high-pressure center to the Ural Mountains. During the precipitation period, the divergence of Sichuan Basin at high-level is positive, which is favorable for the continuous convergence and upward movement at lower and middle layers.
  • Fig. 1  Composited wavelet power spectrum of persistent extreme precipitation events (the solid line)

    (the shaded denotes passing the test of 0.05 level, the dotted line denotes the boundary influence area)

    Fig. 2  Time series of daily precipitation, 15-30-day and 30-60-day precipitation from May to Sep in 1981 in Sichuan Basin

    (the lower horizontal line marks the threshold of extreme precipitation, while the upper horizontal line represents the value of 0 for low-frequency components)

    Fig. 3  15-30-day wind fields(a) and wind field before filtering(b) at 850 hPa during the persistent extreme precipitation period

    (the gray denotes passing the test of 0.05 level, "A" and "C" denote anticyclonic and cyclonic anomalies, and the black denotes the Tibetan Plateau)

    Fig. 4  15-30-day geopotential fields(a) and geopotential fields before filtering(b) at 500 hPa during the persistent extreme precipitation period

    (the shaded denotes the geopotential anomaly; the contour denotes the original height, unit:gpm; the black dots denote passing the test of 0.05 level)

    Fig. 5  Cross-sections of 15-30-day composited wind field and 15-30-day composited vorticity during the period of persistent extreme precipitation events

    (a)wind field averaged along 102°-105°E (the contour denotes meridional wind, the positive denotes south wind and the negative denotes north wind; the shaded denotes zonal wind, unit:m·s-1), (b)vorticity field averaged 28°-34°N, 102°-105°E (unit:10-6s-1)

    Fig. 6  Cross-section of 15-30-day wind field along 100°-120°E at 850 hPa from 30 days before precipitation to 15 days after precipitation

    (unit:m·s-1, the box denotes the target area of Sichuan Basin, hereinafter)
    (a)zonal wind, (b)meridional wind

    Fig. 7  Evolution of 15-30-day wind fields at 850 hPa from 7 days before the precipitation to the first day after onset (unit:m·s-1, "A" and "C" denote anticyclonic and cyclonic, respectively, and the black denotes the Tibetan Plateau)

    Fig. 8  Cross-section of 15-30-day geopotential height (the shaded) and wind field (the contour, unit:m·s-1) along 80°-100°E at 500 hPa from 30 days before precipitation to 15 days after precipitation

    (a)geopotential height and zonal wind, (b)geopotential height and meridional wind

    Fig. 9  Evolution of 15-30-day geopotential height at 500 hPa from 14 days before the precipitation to the first day after onset (unit:gpm)

    Table  1  Persistent extreme precipitation events in Sichuan Basin

    发生时间 持续时间/d
    1981-07-10—14 5
    1981-09-01—03 3
    1982-07-08—10 3
    1983-07-28—30 3
    1984-08-02—04 3
    1985-09-11—14 4
    1987-06-24—27 4
    1988-07-23—26 4
    1988-08-11—15 5
    1990-08-26—28 3
    1992-07-12—14 3
    1992-08-01—03 3
    1998-07-04—06 3
    1999-07-13—15 3
    2005-06-30—03 4
    2005-08-07—09 3
    2008-09-08—10 3
    2008-09-23—26 4
    2009-09-10—14 5
    2010-07-15—17 3
    2013-06-19—21 3
    2013-07-08—11 4
    2014-08-07—09 3
    DownLoad: Download CSV
  • [1]
    Madden R A, Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific.J Atmos Sci, 1970, 28:702-708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0520071205163141
    [2]
    Madden R A, Julian P R.Description of global scale in the tropic with 40-50 day period.J Atmos Sci, 1972, 29:1109-1123. doi:  10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [3]
    Murakami T, Nakazawa T, He J.On the 40-50 day oscillation during the 1979 Northern Hemisphere summer.Part Ⅰ:Phase propagation.J Meteor Soc Japan, 1984, 62:440-468. doi:  10.2151/jmsj1965.62.3_440
    [4]
    Jiang X A, Li T.Re-initiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean.J Climate, 2005, 18(18):3777-3795. doi:  10.1175/JCLI3516.1
    [5]
    Wang B, Webster P, Teng H Y.Antecedents and self-induction of active-break South Asian monsoon unraveled by satellites.Geophys Res Lett, 2005, 32(4):24-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0619439b502cdef95543abe2d8f8b71
    [6]
    Qi Y, Zhang R, Li T, et al.Interactions between the summer meanmonsoon and the intraseasonal oscillation in the Indian monsoon region.Geophys Res Lett, 2008, 35(5):134-143. doi:  10.1029/2008GL034517/pdf
    [7]
    Qi Yanjun, Zhang Renhe, Zhao Ping, et al.Comparison of the structure and evolution of intraseasonal oscillations before and after onset of the Asian summer monsoon.Acta Meteor Sinica, 2013, 27(5):684-700. doi:  10.1007/s13351-013-0511-2
    [8]
    Li T.Recent advance in understanding the dynamics of the Madden-Julian oscillation.J Meteor Res, 2014, 28(1):1-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e201401003
    [9]
    米瑞芝, 牛法宝, 向影, 等.MJO影响下2016年云南首场强降水过程的成因.干旱气象, 2017, 35(2):232-238. http://d.old.wanfangdata.com.cn/Periodical/ghqx201702009
    [10]
    Chatterjee P, Goswami B N.Structure, genesis and scale selection of the tropical quasi-biweekly mode.Quart J Roy Meteor Soc, 2004, 130:1171-1194. doi:  10.1256/qj.03.133
    [11]
    Hsu P C, Li T.Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian Oscillation.J Climate, 2012, 25:4914-4931. doi:  10.1175/JCLI-D-11-00310.1
    [12]
    Lorence A C.The evolution of p1anetary scale 200mb divergence flow during FGGE year.Quart J R Meteor Soc, 1984, 100:427-442. doi:  10.1002/qj.49711046408
    [13]
    谭桂容, 范艺媛, 牛若芸.江淮地区强降水分型及其环流演变.应用气象学报, 2018, 29(4):396-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180402&flag=1
    [14]
    穆明权, 李崇银.1998年南海夏季风的爆发与大气季节内振荡的活动.气候与环境研究, 2000, 5(4):375-387. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200004005
    [15]
    Lin Ailan, Liang Jianyin, Li Chunhui.Characteristics of frequency spectrum variation of intraseasonal oscillation of convection during South China Sea summer monsoon.Journal of Tropical Meteorology, 2006, 12(1):34-40. http://mall.cnki.net/magazine/Article/RQXB200601006.htm
    [16]
    琚建华, 钱诚, 曹杰.东亚夏季风的季节内振荡研究.大气科学, 2005, 29(2):187-194. doi:  10.3878/j.issn.1006-9895.2005.02.03
    [17]
    琚建华, 刘一伶, 李汀, 等.南海夏季风季节内振荡的年际变化研究.大气科学, 2010, 34(2):253-261. http://d.old.wanfangdata.com.cn/Periodical/daqikx201002002
    [18]
    陈尚锋, 温之平, 陈文.南海地区大气30~60天低频振荡及其对南海夏季风的可能影响.大气科学, 2011, 35(5):982-992. doi:  10.3878/j.issn.1006-9895.2011.05.17
    [19]
    毛江玉, 吴国雄.1991年江淮梅雨与副热带高压的低频振荡.气象学报, 2005, 63(5):762-770. doi:  10.3321/j.issn:0577-6619.2005.05.020
    [20]
    Zhu C W, Nakazawa T, Li J P, et al.The 30-60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998.Geophys Res Lett, 2003, 30(18):356-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36e4f2596f3bc4439d19a9ad59239df7
    [21]
    夏芸, 管兆勇, 王黎娟.2003年江淮流域强降水过程与30-70 d低频振荡的联系.南京气象学院学报, 2008, 31(1):33-41. doi:  10.3969/j.issn.1674-7097.2008.01.005
    [22]
    陆尔, 丁一汇.1991年江淮特大暴雨与东亚大气低频振荡.气象学报, 1996, 54(6):730-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600422715
    [23]
    信飞.1997年华南汛期降水异常与大气低频振荡的关系//第26届中国气象学会年会预测与公共服务分会场论文集.2009. http://www.cnki.com.cn/Article/CJFDTotal-QXXX200712005.htm
    [24]
    胡坚, 陈雪峰.大气季节内低频振荡与华北暴雨过程.气象学报, 1995, 53(1):622-630. doi:  10.3321/j.issn:0577-6619.1995.01.007
    [25]
    Hsu P C, Lee J Y, Ha K J.Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China.Int J Climatol, 2016, 36(4):1403-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16aa265947bac585d9743ec08e36ba78
    [26]
    李春晖, 潘蔚娟, 王婷.广东省降水的多尺度时空投影预测方法.应用气象学报, 2018, 29(2):217-231. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180208&flag=1
    [27]
    史学丽, 丁一汇.1994年中国华南大范围暴雨过程的形成与夏季风活动的研究.气象学报, 2000, 58(6):666-678. doi:  10.3321/j.issn:0577-6619.2000.06.003
    [28]
    陈官军.中国南方夏季区域持续性强降水与大气季节内振荡.北京:中国气象科学研究院, 2014. http://cdmd.cnki.com.cn/Article/CDMD-85101-1014215178.htm
    [29]
    尹志聪, 王亚非.江淮夏季降水季节内振荡和海气背景场的关系.大气科学, 2011, 35(3):495-505. doi:  10.3878/j.issn.1006-9895.2011.03.10
    [30]
    韩世茹, 王黎娟, 于波.淮河流域夏季持续性降水与15~30天低频振荡的联系及前期信号.气象与环境科学, 2015, 38(4):22-32. doi:  10.3969/j.issn.1673-7148.2015.04.003
    [31]
    温之平, 黄荣辉, 贺海晏, 等.中高纬度大气环流异常和低纬30~60天低频对流活动对南海夏季风爆发的影响.大气科学, 2006, 30(5):952-964. doi:  10.3878/j.issn.1006-9895.2006.05.23
    [32]
    赵华生, 黄小燕, 黄颖.ECMWF集合预报产品在广西暴雨预报中的释用.应用气象学报, 2018, 29(3):344-353. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180308&flag=1
    [33]
    张博, 金荣花, 赵滨, 等.一个表征江南春雨的环流指数及其天气学特征.应用气象学报, 2018, 29(2):129-140. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180201&flag=1
    [34]
    赵琳娜, 刘莹, 包红军, 等.基于重组降水集合预报的洪水概率预报.应用气象学报, 2017, 28(5):544-554. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170503&flag=1
    [35]
    吴洪宝.气候变率诊断和预测方法.北京:气象出版社, 2005.
    [36]
    姚菊香, 王盘兴, 李丽平.季节内振荡研究中两种数字滤波器的性能对比.南京气象学院学报, 2005, 28(2):248-253. doi:  10.3969/j.issn.1674-7097.2005.02.014
    [37]
    施能, 魏风英, 封国林, 等.气象场相关分析及合成分析中蒙特卡洛检验方法及应用.南京气象学院学报, 1997, 20(3):355-359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700406800
    [38]
    庞玥.江淮流域梅雨期持续性降水与10-30 d低频振荡的关系及其前期信号研究.南京:南京信息工程大学, 2013.
    [39]
    闵屾, 钱永甫.中国极端降水事件的区域性和持续性研究.水科学进展, 2008, 19(6):763-771. doi:  10.3321/j.issn:1001-6791.2008.06.001
    [40]
    陈思, 高建芸, 黄丽娜, 等.华南前汛期持续性暴雨年代际变化特征及成因.应用气象学报, 2017, 28(1):86-97. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170108&flag=1
    [41]
    甘衍军, 徐晶, 赵平, 等.暴雨致洪预报系统及其评估.应用气象学报, 2017, 28(4):385-398. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170401&flag=1
    [42]
    陈官军, 魏凤英.基于低频振荡特征的夏季江淮持续性降水延伸期预报方法.大气科学, 2012, 36(3):633-644. http://d.old.wanfangdata.com.cn/Periodical/daqikx201203015
    [43]
    钟利华, 曾鹏, 史彩霞, 等.西江流域面雨量与区域大气环流型关系.应用气象学报, 2017, 28(4):470-480. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170408&flag=1
    [44]
    王黎娟, 庞玥, 于波, 等.江淮流域梅雨期持续性强降水及其10~30 d低频环流特征.热带气象学报, 2014, 30(5):851-860. doi:  10.3969/j.issn.1004-4965.2014.05.005
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (4353) PDF downloads(179) Cited by()
    • Received : 2018-09-14
    • Accepted : 2018-11-05
    • Published : 2019-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint