Yu Mengying, Tan Yongbo, Shi Zheng, et al. Effects of channel-induced charge on discharge activity characteristics. J Appl Meteor Sci, 2019, 30(1): 105-116. DOI:  10.11898/1001-7313.20190110.
Citation: Yu Mengying, Tan Yongbo, Shi Zheng, et al. Effects of channel-induced charge on discharge activity characteristics. J Appl Meteor Sci, 2019, 30(1): 105-116. DOI:  10.11898/1001-7313.20190110.

Effects of Channel-induced Charge on Discharge Activity Characteristics

DOI: 10.11898/1001-7313.20190110
  • Received Date: 2018-08-02
  • Rev Recd Date: 2018-09-05
  • Publish Date: 2019-01-31
  • In order to explore effects of different polarity charge implantation method on the discharge of thunderstorm clouds in the charge-replacement scheme after lightning discharge, a batch of sensitive experiments are implemented by changing the channel-induced charge to simulate a typical thunderstorm case in Nanjing, based on existing three-dimensional (3-D) thunderstorm cloud electrification and discharge patterns. Eeffects of thunderstorm cloud discharge are discussed from the perspective of space charge structure after discharge, lightning channel length, lightning frequency and type. Simulations show that the amount of induced charge by the lightning channel has a significant effect on the spatial charge structure distribution and the length of the intra-cloud flash channel. As the amount of induced charge in the channel increases, the number of lattice points where the polarity of the space charge is reversed before and after discharge increases, and the space charge structure becomes more complex, which in turn increases the intra-cloud flash with a shorter length of the lightning channel. The space charge structure is disordered, and it becomes more difficult for a wide range of identical-polar charge stacks to form during the development process. Meanwhile, it is also difficult for the lightning channel to pass through charge stack with the same polarity during the propagation process, and therefore the intra-cloud flash channel is limited to a pair of smaller heteropolar charge stacks. Eventually, the frequency of intra-cloud flashes that leads to shorter lightning channel lengths increases. The total amount of channel induced charge accumulation under different induction control multiples can be considered approximately the same within the error tolerance. The frequency of intra-cloud flashes is negatively correlated with the average cumulative amount of channel charges in different lightning channel induced charges:When the average cumulative amount of channel induced charges increases, the frequency of intra-cloud flashes will decrease. The change of the induced charge amount in the channel makes the charge distribution of the space charge region unbalanced. The frequency and type of the cloud-to-ground flash are affected by many factors, and the changing pattern is not obvious. Therefore, the channel-induced charge amount has little correlation with the frequency and type of cloud-to-ground flashes.
  • Fig. 1  Environmental stratification curve(a) and vertical wind profile(b)

    Fig. 2  The variation trend of spatial charge polarity reversal lattice points with lightning order under different induction control multiples

    Fig. 3  Cross-section of the charge structure when t=21 min, y=42 km

    (isotherms of 0℃, -13.8℃, -40℃ are shown, thick black lines show the contour structure of the thundercloud)

    Fig. 4  The average cumulative amount of channel-induced charge, mean channel length, and lightning frequency change over time in the intra-cloud flash

    (a)the average cumulative amount of induced charges of the intra-cloud flash channel, (b)the average length of the intra-cloud flash channel, (c)the frequency of intra-cloud flash

    Fig. 5  Ratio of intra-cloud flash of channel lengths to total intra-cloud flash under different induction control multiples

    (a)channel lengths of the intra-cloud flash at 1-321 grid points, (b)channel lengths of the intra-cloud flash at 1-42 grid points

    Fig. 6  Trigger height of small channel length varying with time under different induction control multiples

    Fig. 7  Charge of the top shield, main positive and negative, and bottom positive charge in the early(a), mature(b), and dissipative(c) phases of thunderstorms at various induction control times

    Table  1  The average charge accumulation, intra-cloud flash frequency and channel induced charge accumulation under different induction control multiples

    感应控制倍数α 电荷平均累积量/C 云闪频次 通道感应电荷累积量/C
    0.3 6.73 1041 6684.5
    0.4 6.73 911 7454.1
    0.5 10.50 747 8355.5
    0.6 10.30 801 8320.1
    0.7 11.16 774 8644.9
    1 15.30 623 9567.9
    DownLoad: Download CSV

    Table  2  The total and the positive/negative ground flash frequency in different induction control multiples

    感应控制倍数α 总地闪频次 正地闪频次 负地闪频次
    0.3 194 58 136
    0.4 158 102 56
    0.5 139 93 46
    0.6 153 96 57
    0.7 160 47 113
    1 117 40 77
    DownLoad: Download CSV
  • [1]
    张廷龙, 杨静, 楚荣忠, 等.平凉一次雷暴云内的降水粒子分布及其电学特征的探讨.高原气象, 2012, 31(4):1091-1099. http://d.old.wanfangdata.com.cn/Periodical/gyqx201204024
    [2]
    郭凤霞, 孙京.雷暴云起电机制及其数值模拟的回顾与进展.高原气象, 2012, 31(3):862-874. http://d.old.wanfangdata.com.cn/Conference/8144663
    [3]
    张义军, 言穆弘, 杜健.闪电产生氮氧化物(LNO_X)区域特征计算(Ⅰ):理论和计算方法.高原气象, 2002, 21(4):348-353. doi:  10.3321/j.issn:1000-0534.2002.04.002
    [4]
    郭凤霞, 王昊亮, 孙京, 等.积云模式下三维闪电分形结构的数值模拟.高原气象, 2015, 34(2):534-545. http://d.old.wanfangdata.com.cn/Conference/8678587
    [5]
    谭涌波, 陶善昌, 祝宝友, 等.云闪放电对云内电荷和电位分布影响的数值模拟.地球物理学报, 2007, 50(4):1053-1065. doi:  10.3321/j.issn:0001-5733.2007.04.012
    [6]
    Macgorman D R, Rust W D.The Electrical Nature of Storms.New York:Oxford University Press, 1998, 8:791-794. http://120.52.51.17/www.gbv.de/dms/goettingen/214818225.pdf
    [7]
    David R W, Macgorman D R, Arnold R T.Positive cloud-to-ground lightning flashes in severe storms.Geophys Res Lett, 2013, 8(7):791-794. doi:  10.1029/GL008i007p00791
    [8]
    Rawlins F.A numerical study of thunderstorm electrification using a three dimensional model incorporating the ice phase.Q J R Meteorol Soc, 1982, 108(458):779-800. doi:  10.1002/(ISSN)1477-870X
    [9]
    Takahashi T.Determination of lightning origins in a thunderstorm model.J Meteor Soc Japan, 1987, 65:777-794. doi:  10.2151/jmsj1965.65.5_777
    [10]
    Ziegler C L, MacGorman D R.Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm.J Atmos Sci, 1994, 51(51):833-851. doi:  10.1175-1520-0469(1994)051-0833-OLMRTM-2.0.CO%3b2/
    [11]
    Baker M B, Christian H J, Latham J.A computational study of the relationships linking lightning frequency and other thundercloud parameters.Q J R Meteorol Soc, 1995, 121(527):1525-1548. doi:  10.1002/(ISSN)1477-870X
    [12]
    Macgorman D R, Straka J M, Ziegler C L.A lightning parameterization for numerical cloud models.J Appl Meteorol, 2001, 40(3):459-478. doi:  10.1175/1520-0450(2001)040<0459:ALPFNC>2.0.CO;2
    [13]
    徐良韬, 张义军, 王飞, 等.雷暴起电和放电物理过程在WRF模式中的耦合及初步检验.大气科学, 2012, 36(5):1041-1052. http://d.old.wanfangdata.com.cn/Periodical/daqikx201205014
    [14]
    Liu D, Xiushu Q, Peng L, et al.Charge structure of a summer thunderstorm in North China:Simulation using a regional atmospheric model system.Adv Atmos Sci, 2014, 31(5):1022-1034. doi:  10.1007/s00376-014-3078-7
    [15]
    Zhao P, Yin Y, Xiao H.The effects of aerosol on development of thunderstorm electrification:A numerical study.Atmos Res, 2015, 153:376-391. doi:  10.1016/j.atmosres.2014.09.011
    [16]
    郭凤霞, 陆干沂, 吴鑫, 等.强雷暴中正地闪发生的条件.中国科学:地球科学, 2016, 59(7):1401-1413. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201605010.htm
    [17]
    Coleman L M, Marshall T C, Stolzenburg M, et al.Effects of charge and electrostatic potential on lightning propagation.J Geophys Res Atmos, 2003, 108(9):1601-1612. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b5cbfc60301173143e87e55ce16c27d
    [18]
    谭涌波, 陶善昌, 祝宝友, 等.云闪放电对云内电荷和电位分布影响的数值模拟.地球物理学报, 2007, 50(4):1053-1065. doi:  10.3321/j.issn:0001-5733.2007.04.012
    [19]
    Mansell E R, MacGorman D R, Ziegler C L, et al.Simulated three dimensional branched lightning in a numerical thunderstorm model.J Geophy Res Atmos, 2002, 107(9):ACL 2-1-ACL 2-12. doi:  10.1029/2000JD000244
    [20]
    Mansell E R, Macgorman D R, Ziegler C L, et al.Charge structure and lightning sensitivity in a simulated multicell thunderstorm.J Geophy Res Atmos, 2005, 110(12):1545-1555. doi:  10.1029-2004JD005287/
    [21]
    郑栋, 张义军, 马明, 等.大气环境层结对闪电活动影响的模拟研究.气象学报, 2007, 65(4):622-632. doi:  10.3321/j.issn:0577-6619.2007.04.014
    [22]
    黄丽萍, 管兆勇, 陈德辉, 等.基于高分辨率中尺度气象模式的实际雷暴过程的数值模拟试验.大气科学, 2008, 32(6):1341-1351. doi:  10.3878/j.issn.1006-9895.2008.06.09
    [23]
    夏艳羚, 谭涌波, 向春燕, 等.放电后电荷重置对雷暴云电荷结构及闪电行为的影响.气候与环境研究, 2017, 22(4):487-498. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj201704009
    [24]
    Shao X M, Krehbiel P R.The spatial and temporal development of intracloud lightning.J Geophys Res Atmos, 1996, 1012(21):26641-26668. http://d.old.wanfangdata.com.cn/Periodical/gyqx200906025
    [25]
    董万胜, 刘欣生, 陈慈萱, 等.用宽带干涉仪观测云内闪电通道双向传输的特征.地球物理学报, 2003, 44(3):317-321. doi:  10.3321/j.issn:0001-5733.2003.03.006
    [26]
    刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160102&flag=1
    [27]
    Tao S, Tan Y, Zhu B, et al.Fine-resolution simulation of cloud-to-ground lightning and thundercloud charge transfer.Atmos Res, 2009, 91(2):360-370. https://www.sciencedirect.com/science/article/pii/S0169809508002068
    [28]
    Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorms.Nat Geosci, 2008, 1(4):233-237. doi:  10.1038/ngeo162
    [29]
    张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140501&flag=1
    [30]
    武斌, 张广庶, 文军, 等.闪电初始预击穿过程辐射脉冲特征及电流模型.应用气象学报, 2017, 28(5):555-567. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170504&flag=1
    [31]
    林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180311&flag=1
    [32]
    谭涌波, 梁忠武, 师正, 等.空间电荷分布特征对云闪传播行为的影响.高原气象, 2015, 34(5):1502-1510. http://d.old.wanfangdata.com.cn/Periodical/gyqx201505030
    [33]
    Smith D A, Shao X M, Holden D N, et al.A distinct class of isolated intracloud lightning discharges and their associated radio emissions.J Geophys Res Atmos, 1999, 104(D4):4189-4212. doi:  10.1029/1998JD200045
    [34]
    Zhu Baoyou, Zhou Helin, Ma Ming, et al.Observations of narrow bipolar events in East China.J Atmos Solar-Terr Phy, 2009, 72(2-3):271-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=181a7041b137cf5d27c680d7bb87d928
    [35]
    吴亭, 董万胜, 李良福, 等.基于电离层反射的袖珍云闪(CID)三维定位研究.地球物理学报, 2012, 55(4):1095-1103. doi:  10.6038/j.issn.0001-5733.2012.04.004
    [36]
    祝宝友, 陶善昌, 谭涌波.伴随超强VHF辐射的闪电双极性窄脉冲初步观测.气象学报, 2007, 65(1):124-130. http://d.old.wanfangdata.com.cn/Periodical/qxxb200701012
    [37]
    Liu H, Dong W, Wu T, et al.Observation of compact intracloud discharges using VHF broadband interferometers.J Geophys Res Atmos, 2012, 117, D0103. doi:  10.1029/2011JD016185
    [38]
    Wu T, Takayanagi Y, Yoshida S, et al.Spatial relationship between lightning narrow bipolar events and parent thunderstorms as revealed by phased array radar.Geophys Res Lett, 2013, 40(3):618-623. doi:  10.1002/grl.50112
    [39]
    姜睿娇, 董万胜, 刘恒毅, 等.雷暴中双极性窄脉冲事件的位置与辐射强度.应用气象学报, 2018, 29(2):177-187. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180205&flag=1
    [40]
    张骁, 张阳, 张义军, 等.NBE和IBP始发的闪电初始特征.应用气象学报, 2018, 29(3):364-373. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180310&flag=1
    [41]
    Takeuti T, Nakano M, Brook M, et al.The anomalous winter thunderstorms of the Hokuriku Coast.J Geophys Res Atmos, 1978, 83(C5):2385-2394. doi:  10.1029/JC083iC05p02385
    [42]
    Brook M, Nakano M, Krehbiel P, et al.The electrical structure of the hokuriku winter thunderstorms.J Geophys Res Oceans, 1982, 87(C2):1207-1215. doi:  10.1029/JC087iC02p01207
    [43]
    Wang H, Guo F, Zhao T, et al.A numerical study of the positive cloud-to-ground flash from the forward flank of normal polarity thunderstorm.Atmos Res, 2016, 169(4):183-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfc14e9e68054a463aede1818b849a5e
    [44]
    谭涌波, 梁忠武, 师正, 等.雷暴云底部正电荷区对闪电类型影响的数值模拟.中国科学(地球科学), 2014, 44(12):2743-2752. http://d.old.wanfangdata.com.cn/Conference/8187034
    [45]
    Qie X, Zhang T, Chen C, et al.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau.Geophys Res Lett, 2005, 32(32):215-236. doi:  10.1029-2004GL022162/
    [46]
    谭涌波, 张冬冬, 周博文, 等.地闪近地面形态特征的数值模拟.应用气象学报, 2015, 26(2):211-220. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150209&flag=1
    [47]
    谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170210&flag=1
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (3147) PDF downloads(101) Cited by()
    • Received : 2018-08-02
    • Accepted : 2018-09-05
    • Published : 2019-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint