Wang Chenggang, Wei Xialu, Yan Jiade, et al. Grade evaluation of detection environment of meteorological stations in Beijing. J Appl Meteor Sci, 2019, 30(1): 117-128. DOI:  10.11898/1001-7313.20190111.
Citation: Wang Chenggang, Wei Xialu, Yan Jiade, et al. Grade evaluation of detection environment of meteorological stations in Beijing. J Appl Meteor Sci, 2019, 30(1): 117-128. DOI:  10.11898/1001-7313.20190111.

Grade Evaluation of Detection Environment of Meteorological Stations in Beijing

DOI: 10.11898/1001-7313.20190111
  • Received Date: 2018-09-17
  • Rev Recd Date: 2018-11-14
  • Publish Date: 2019-01-31
  • With the rapid development of urbanization, meteorological station detection environment is constantly changing. A large number of research results show that the impact of detecting environmental changes on meteorological elements is very obvious, and the spatial representativeness of observations has strong diversity characteristics. Therefore, it is necessary to establish a scientific and reasonable assessment method for the spatial representativeness of observation sites.Using Landsat satellite remote sensing data of 6 selected summers of 1990, 1994, 2000, 2005, 2011, 2013 and digital elevation data in 2009, the landscape indicator parameters around national surface weather observatories in Beijing are calculated and statistical analysis are carried out with observations of national surface meteorological stations. Results show that parameters, such as land use types, landscape indexes around station, building height and sky view factor, etc., can digitally denote the configuration information of the meteorological detection environment.The correlation between landscape indicator parameters and meteorological elements is analyzed. In the study of landscape indicator parameters affecting temperature changes, three high-altitude stations (Foyeding Station, Xiayunling Station and Shangdianzi Station) are used as climate background stations to select advantages and disadvantages of existing indicators. The study shows that main factors which affect the difference of temperature are urban area, water area, largest patch index, largest patch of urban area, contagion index, mean fractal dimension and sky view factor. In the study of response of the landscape indicator parameters to the absolute humidity, the correlation between the absolute humidity and the observed landscape indicator parameters which pass the significance test shows that, among the landscape indicator parameters, urban area, water area, largest patch index, largest patch of urban area, contagion index, mean fractal dimension and sky view factor have good relationship with humidity. But only three landscape indicator parameters have good response correlation with small wind frequency, which are water area, largest patch index and largest patch of urban area. Based on statistical results, a set of preliminary methods for evaluating the detection environment are obtained according to the response intensity of landscape indicator parameters to each element. By classifying different stations and obtaining the effective influence range of site data, the landscape indicator assessment which can detect the environmental impact degree may streamline the assessment.This method is used to evaluate 15 national surface meteorological stations in Beijing. The impact of the surrounding environment is lowest in Huairou Station, followed by Fangshan Station, Changping Station, Miyun Station, Pinggu Station and Yanqing Station. There are two stations with the greatest environmental impacts, namely Fengtai Station and Chaoyang Station.
  • Fig. 1  Distribution of land use types in 5 km buffer zone of Tongzhou Station in 1990 and 2013

    Fig. 2  Relation between temperature difference and six observation landscape indicator parameters at Tongzhou Station

    Fig. 3  The fitting of building height, sky view factor to temperature in clear sky on 3 Jul, 3 Aug and 22 Aug in 2009

    Table  1  Landscape indicator parameters at Tongzhou Station (5 km buffer)

    指标 1990年 1994年 2000年 2005年 2011年 2013年
    城镇面积/% 24.79 29.29 47.47 54.50 63.60 70.80
    林地面积/% 0.04 0.04 0.06 0.04
    裸地面积/% 43.53 40.41 1.77 0.02 3.30 4.90
    农田面积/% 21.86 17.24 44.83 29.60 6.23 5.44
    绿地面积/% 4.69 4.01 14.35 24.40 16.65
    水体面积/% 9.81 8.33 1.88 1.62 2.42 2.21
    斑块数 967 1976 449 859 754 616
    最大斑块指数 12.02 13.64 38.11 45.85 59.17 63.61
    平均分维数 1.0597 1.059 1.052 1.0561 1.0553 1.0525
    蔓延度指数 37.81 45.40 64.19 60.80 62.20 62.00
    景观丰度指数 4 6 6 6 6 5
    聚集度指数/% 88.68 84.04 93.46 91.33 92.11 93.47
    平均邻近指数 260.25 339.45 416.60 478.90 632.35 1066.72
    DownLoad: Download CSV

    Table  2  Correlations between landscape indicator parameters and temperature difference at 15 stations

    气象站 最大斑块指数 平均分维数 蔓延度指数 水体面积 城镇面积 最大斑块占城镇面积比例
    海淀站 -0.92 0.83
    顺义站 -0.84
    延庆站
    密云站
    朝阳站
    北京市观象台 0.83 0.98 0.84
    石景山站 0.94 0.94 0.98 0.95
    丰台站 0.90 0.90 0.90
    大兴站
    房山站
    昌平站 0.86 -0.97 0.92
    门头沟站 0.92 0.91 0.91 0.93
    平谷站 -0.85
    通州站 0.90 -0.87 0.87 -0.86 0.94 0.88
    DownLoad: Download CSV

    Table  3  Correlations of landscape indicator parameters to humidity at 15 stations

    缓冲区 最大斑块指数 蔓延度指数 聚集度 水体面积 城镇面积 最大斑块占城镇面积比例
    海淀站 0.94
    顺义站
    延庆站 -0.89
    密云站 -0.89 -0.97
    朝阳站
    北京市观象台 -0.81
    石景山站 -0.83 -0.82
    丰台站
    大兴站 -0.88 -0.82 -0.85 -0.88
    房山站
    昌平站 -0.90 -0.84 0.86 -0.92 -0.87
    门头沟站 -0.91 -0.87 -0.91 -0.91
    平谷站
    通州站 -0.86 -0.87 -0.96 0.90 -0.84 -0.86
    DownLoad: Download CSV

    Table  4  Correlations of landscape indicator parameters to the ratio of low wind at 15 stations

    缓冲区 最大斑块指数 蔓延度指数 景观丰度 水体面积 城镇面积 最大斑块占城镇面积比例
    海淀站
    顺义站
    延庆站 0.82 0.76 0.82
    密云站 0.80
    朝阳站
    北京市观象台 0.80 0.79 0.82
    石景山站 0.77 0.72 0.77
    丰台站 0.87
    大兴站
    房山站 0.79 0.76 0.79
    昌平站 0.74 -0.72
    门头沟站 0.73 0.75 0.78 0.81 0.73
    平谷站
    通州站 -0.85 -0.70 0.86
    怀柔站 0.71 0.77 0.71 0.73
    DownLoad: Download CSV

    Table  5  The response intensity of landscape indicator parameters affecting temperature, humidity and small wind frequency

    参数 气温 绝对湿度 小风占比
    城镇面积 6 4 6
    水体面积 3 3
    最大斑块指数 5 5 8
    最大斑块占城镇面积比例 5 4 6
    蔓延度指数 5 5
    平均分维数 3
    聚集度 5
    天空可视因子 5 5
    DownLoad: Download CSV

    Table  6  The environment impact on observations of 15 stations in Beijing by four assessment methods

    气象站 景观指标评估法 人口数量划分法 卫星图像评估法 卫星资料评估法
    怀柔站 很小 很小
    房山站 很大
    昌平站 很大 很大 很大
    密云站
    平谷站
    延庆站
    石景山站 很小
    门头沟站
    顺义站 很大
    北京市观象台 很大
    海淀站 很大 很大
    通州站 很大 很大
    大兴站 很大 很大
    朝阳站 很大 很大
    丰台站 很大 很大 很大 很大
    DownLoad: Download CSV
  • [1]
    李欣, 金莲姬, 郭建侠.浅谈探测环境对气象要素测量值的影响.安徽农业科学, 2011, 39(27):17105-17108. doi:  10.3969/j.issn.0517-6611.2011.27.230
    [2]
    李欣, 郭建侠, 金莲姬.黄淮海平原地区中尺度环境对气温观测的影响.应用气象学报, 2011, 22(6):740-746. doi:  10.3969/j.issn.1001-7313.2011.06.012
    [3]
    邵全琴, 孙朝阳, 刘继远, 等.中国城市扩展对气温观测的影响及其高估程度.地理学报, 2009, 64(11):1292-1302. http://d.old.wanfangdata.com.cn/Periodical/dlxb200911002
    [4]
    杨元建, 石涛, 唐为安, 等.气象台站环境的卫星遥感调查与评估——以安徽代表气象站为例.遥感技术与应用, 2011, 26(6):791-797. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygjsyyy201106013
    [5]
    徐祥德.城市化环境大气污染模型动力学问题.应用气象学报, 2002, 13(增刊Ⅰ):1-12. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2002z1001
    [6]
    刘学锋, 江滢, 任国玉, 等.河北城市化和观测环境改变对地面风速观测资料序列的影响.高原气象, 2009, 28(2):433-439. http://d.old.wanfangdata.com.cn/Periodical/gyqx200902022
    [7]
    陈贵川, 卞林根, 李平, 等.国家气候观象台建设观测环境问题.气象科技, 2008, 36(2):244-248. doi:  10.3969/j.issn.1671-6345.2008.02.025
    [8]
    王超球.广西地面观测场四周障碍物影响分析.气象研究与应用, 2002, 23(3):52-54. doi:  10.3969/j.issn.1673-8411.2002.03.018
    [9]
    陈元, 周国华.观测环境对气温变化的影响.气象, 1992, 18(12):27-28. doi:  10.7519/j.issn.1000-0526.1992.12.007
    [10]
    任国玉, 张爱英, 初子莹, 等.我国地面气温参考站点遴选的依据、原则和方法.气象科技, 2010, 38(1):78-85. doi:  10.3969/j.issn.1671-6345.2010.01.015
    [11]
    杨礼林, 蒋冬雁.观测环境城市化对风的影响.企业科技与发展, 2009(18):310-311. doi:  10.3969/j.issn.1674-0688.2009.18.116
    [12]
    刘卫平, 魏文寿, 王晓梅, 等.北疆气象探测环境的变化对气温序列的影响.沙漠与绿洲气象, 2012, 6(5):1-6. doi:  10.3969/j.issn.1002-0799.2012.05.002
    [13]
    WMO Guide To Meteorological Instruments and Methods of Observation.2008: 172-173.
    [14]
    Meier F, Fenner D, Grassmann T, et al.Crowdsourcing air temperature from citizen weather stations for urban climate research.Urban Climate, 2017, 19:170-191. doi:  10.1016/j.uclim.2017.01.006
    [15]
    Gallo K P.Evaluation of temperature differences for paired stations of the US Climate Reference Network.J Climate, 2010, 18(18):1629-1636. http://cn.bing.com/academic/profile?id=0a3881ceeea74df628ffdd5fab352e8d&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    刘小宁, 张洪政, 李庆祥.不同方法计算的气温平均值差异分析.应用气象学报, 2005, 16(3):345-356. doi:  10.3969/j.issn.1001-7313.2005.03.008
    [17]
    温华洋, 徐光清, 张虎, 等.双套自动气象站数据评估及其优势探讨.应用气象学报, 2012, 23(6):748-754. doi:  10.3969/j.issn.1001-7313.2012.06.012
    [18]
    中国气象局.气象台站观测环境综合调查评估方法.北京:气象出版社, 2007.
    [19]
    中国气象局.国家级地面气象观测站和高空气象观测站探测环境调查评估方法.北京:气象出版社, 2013.
    [20]
    李铁, 邹立尧, 国世友.东北地区低温气象资料数据集及其质量控制.应用气象学报, 2004, 15(增刊Ⅰ):164-167. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2004z1023
    [21]
    Karl T R, Williams C N J, Young P J, et al.A model to estimate the time of observation bias associated with monthly mean maximum, minimum and mean temperatures for the United States.J Applied Meteor, 1986, 25:145-160. doi:  10.1175/1520-0450(1986)025<0145:AMTETT>2.0.CO;2
    [22]
    周雅清, 任国玉.华北地区地表气温观测中城镇化影响的检测和订正.气候与环境研究, 2005, 10(4):743-753. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200504005
    [23]
    王圆圆, 李贵才, 张艳.利用MODIS/LST产品分析基准气候站环境代表性.应用气象学报, 2011, 22(2):214-220. doi:  10.3969/j.issn.1001-7313.2011.02.010
    [24]
    陈飞霖, 阮翠冰.利用Google earth软件进行气象台站观测环境调查评估.气象水文海洋仪器, 2009, 26(4):166-168. doi:  10.3969/j.issn.1006-009X.2009.04.048
    [25]
    王一姝, 高晓东.利用Google earth调查气象台站环境.气象与环境科学, 2009, 32(1):88-90. doi:  10.3969/j.issn.1673-7148.2009.01.019
    [26]
    杨元建, 汪腊宝, 黄勇, 等.城市化进程对气象探测环境代表性的影响:以寿县国家气候观象台为例.气象科技, 2017, 45(1):7-13. http://d.old.wanfangdata.com.cn/Periodical/qxkj201701002
    [27]
    O'Neill R V, Hunsaker C T, Jones K B, et al.Monitoring environmental quality at the landscape scale.Bioscience, 1997, 47(8):513-519. doi:  10.2307/1313119
    [28]
    Ren Z, Zheng H, He X, et al.Estimation of the relationship between urban vegetation configuration and land surface temperature with remote sensing.J Indian Soc Remote Sens, 2015, 43(1):89-100. doi:  10.1007/s12524-014-0373-9
    [29]
    蓝盈, 郑有飞, 段长春, 等.云南省自动气象站土壤湿度数据质量控制.应用气象学报, 2016, 27(2):230-238. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160211&flag=1
    [30]
    窦以文, 屈玉贵, 陶士伟, 等.北京自动气象站实时数据质量控制应用.气象, 2008, 34(8):77-81. http://d.old.wanfangdata.com.cn/Periodical/qx200808012
    [31]
    樊风, 段玮, 杨家康.云南土壤湿度长期变化的初步研究.应用气象学报, 2015, 26(4):409-421. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150403&flag=1
    [32]
    刘勇洪, 房小怡, 栾庆祖.基于卫星数据与GIS技术的北京地区粗糙度长度估算研究.高原气象, 2016, 35(6):1625-1638. http://d.old.wanfangdata.com.cn/Periodical/gyqx201606020
    [33]
    邬建国.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社, 2000:107-115. http://cdmd.cnki.com.cn/Article/CDMD-10269-2005086184.htm
    [34]
    蔡旭晖.湍流微气象观测的印痕分析方法及其应用拓展.大气科学, 2008, 32(1):123-132. http://d.old.wanfangdata.com.cn/Periodical/daqikx200801011
    [35]
    Kaspar F, Hannak L, Schreiber K J.Climate reference stations in Germany:Status, parallel measurements and homogeneity of temperature time series.Adv Sci Res, 2016, 13:163-171. doi:  10.5194/asr-13-163-2016
    [36]
    张爱英.国家基本基准站地面气温序列中城市化影响的检测与订正.北京:中国气象科学研究院, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8404167
    [37]
    周晓倩, 李又君, 李雪源, 等.气象台站迁址历史观测资料三性分析.中国农学通报, 2015, 31(8):223-228. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201508039
    [38]
    杨萍, 刘伟东, 仲跻芹, 等.北京地区自动气象站气温观测资料的质量评估.应用气象学报, 2011, 22(6):706-715. doi:  10.3969/j.issn.1001-7313.2011.06.008
    [39]
    Yang Y J, Wu B W, Shi C E, et al.Impacts of urbanization and station-relocation on surface air temperature series in Anhui Province, China.Pure & Applied Geophysics, 2013, 170(11):1969-1983. http://d.old.wanfangdata.com.cn/Conference/8568179
    [40]
    高志球, 王介民, 马耀明, 等.不同下垫面的粗糙度和中性曳力系数研究.高原气象, 2000, 19(1):17-24. doi:  10.3321/j.issn:1000-0534.2000.01.003
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(6)

    Article views (2841) PDF downloads(243) Cited by()
    • Received : 2018-09-17
    • Accepted : 2018-11-14
    • Published : 2019-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint