Chen Yan, Zhang Ning. The wind turbulence of the near-surface layer of Jiangsu coastal area and its response to typhoon. J Appl Meteor Sci, 2019, 30(2): 177-190. DOI:  10.11898/1001-7313.20190205.
Citation: Chen Yan, Zhang Ning. The wind turbulence of the near-surface layer of Jiangsu coastal area and its response to typhoon. J Appl Meteor Sci, 2019, 30(2): 177-190. DOI:  10.11898/1001-7313.20190205.

The Wind Turbulence of the Near-surface Layer of Jiangsu Coastal Area and Its Response to Typhoon

DOI: 10.11898/1001-7313.20190205
  • Received Date: 2018-10-08
  • Rev Recd Date: 2018-12-25
  • Publish Date: 2019-03-31
  • In order to study the influence of wind turbulence characteristics on the rational and safe development and utilization of wind energy resources, long-term wind gradient observations are carried out in Jiangsu with five wind towers along the beach. Based on the wind speed and wind direction observations for 42 consecutive months from June 2009 to November 2012, temporal and spatial variation characteristics of the surface layer wind gust factor and turbulence intensity are analyzed. Variation characteristics of gust factor and turbulence intensity with wind speed, the influence of land and sea distribution on gust factor and turbulence intensity are then discussed. Seven typhoons that have great impacts on Jiangsu are selected, including the rare typhoon Damrey in 2012 that landed in Jiangsu, and the typhoon's influence on the wind is discussed. Results show that the gust factor and turbulence intensity are strong at the height of 10 meters, in the coastal areas of Jiangsu. The annual average gust factor of 10 m and 70 m heights in the coastal areas of Jiangsu are 1.50 and 1.24; the turbulence intensities are 0.20 and 0.11, respectively. The frequency distribution of gust factor and turbulence intensity is unimodal. At lower observation heights, the frequency distribution is wider, the peak is lower, and the peak is biased toward the high value area. The influence of sea and land distribution is obvious. The turbulence intensity of offshore wind is significantly greater than that of onshore wind. The wind speed has a significant impact on gust factor and turbulence intensity, which decrease with the increase of wind speed. When a wind greater than strong breeze happens, the gust factor and turbulence intensity are basically stable and less variable. Near the typhoon center, the wind speed has a bimodal change of increasing-subtracting-increasing, and the wind direction changes rapidly in a short time. The turbulence intensity at 10 m and 70 m heights are 0.25 and 0.14, the gust factor at 10 m and 70 m heights are 1.65 and 1.33, much larger than the value around typhoon and without typhoon. During the passage of the typhoon center, the turbulence intensity and gust factor do not decrease with height and they increase between 30 m and 50 m. When the wind speed increases, the turbulence intensity and gust factor decrease overall, but local peaks may occur when the wind is strong breeze to moderate gale while the typhoon center passes, threatening the safety of the turbine.
  • Fig. 1  Distribution of wind tower sites

    Fig. 2  Variations of wind speed(a), gust coefficient(b) and turbulence intensity(c)

    Fig. 3  Vertical variations of gust factor(a) and turbulence intensity(b)

    Fig. 4  Distributions of gust coefficient(a) and turbulence intensity(b) in different directions at 10 m

    Fig. 5  Frequency distributions of gust factor(a) and turbulence intensity(b)

    Fig. 6  Meteorological elements of Tower 1 during the impact of typhoon Damrey in Aug 2012(a)wind speed and direction at 10 m, (b)wind speed and direction at 70 m, (c)pressure at 8.5 m, maximum wind speed at 10 m and 70 m

    Fig. 7  Vertical variations of wind speed(a), gust factor(b) and turbulence intensity(c)

    Fig. 8  Variations of gust factor(a) and turbulence intensity(b) of Tower 1 during the impact of typhoon Damrey in Aug 2012

    Fig. 9  Variations of gust factor(a) and turbulence intensity(b) with wind speed

    Table  1  The information of wind tower and observation settings

    测风塔编号 塔高/m 海拔高度/m 周围环境 位置 风速观测层次/m 风向观测层次/m
    1 70 1.0 沿海滩涂、周围有低矮灌木 连云港连云区 10,30,50,70 10,50,70
    2 100 1.0 沿海滩涂 盐城射阳县 10,30,50,70,100 10,50,70,100
    3 70 0.5 沿海滩涂、周围有少量树木 盐城东台市 10,30,50,70 10,50,70
    4 100 1.0 沿海滩涂 南通如东市 10,30,50,70,100 10,50,70,100
    5 70 1.5 沿海滩涂、周围有少量低矮建筑物 南通启东市 10,30,50,70 10,50,70
    DownLoad: Download CSV

    Table  2  Effective data integrity rate of observations(unit:%)

    测风塔编号 风速 风向
    10 m 30 m 50 m 70 m 100 m 10 m 50 m 70 m 100 m
    1 97.2 97.4 97.8 97.5 97.2 97.2 97.5
    2 96.5 96.7 96.5 96.6 96.2 95.8 95.9 95.8 95.5
    3 97.1 97.0 97.1 97.1 96.6 96.6 96.8
    4 98.3 98.5 98.7 98.7 98.7 98.4 98.4 98.4 98.4
    5 99.0 99.1 99.4 99.4 98.8 99.0 99.0
    DownLoad: Download CSV

    Table  3  Gust coefficient and turbulence intensity at different wind speed levels

    要素 高度/m 1级风 2级风 3级风 4级风 5级风 6级风 7级风 8级及以上风
    阵风系数 10 1.76 1.52 1.47 1.44 1.41 1.25 0.94 0.46
    30 1.69 1.34 1.30 1.29 1.28 1.27 1.14 0.69
    50 1.70 1.33 1.25 1.23 1.23 1.22 1.20 0.83
    70 1.71 1.32 1.24 1.21 1.20 1.19 1.18 0.97
    100 1.71 1.31 1.23 1.20 1.17 1.16 1.16 1.01
    湍流强度 10 0.31 0.19 0.18 0.17 0.17 0.14 0.08 0.03
    30 0.29 0.14 0.11 0.11 0.11 0.11 0.10 0.04
    50 0.30 0.13 0.10 0.09 0.10 0.10 0.09 0.05
    70 0.30 0.13 0.10 0.09 0.08 0.08 0.08 0.06
    100 0.30 0.13 0.09 0.08 0.08 0.07 0.07 0.06
    DownLoad: Download CSV
  • [1]
    Powell M D, Vickery P J, Reinhold T A.Reduced drag coefficient for high wind speeds in tropical cyclones.Nature, 2003, 422:279-283. doi:  10.1038/nature01481
    [2]
    Kogaki T, Matsumiya H, Abe H, et al.Wind characteristics and models for wind turbine design in Japan.Journal of Environment and Engineering, 2009, 4(3):467-478. doi:  10.1299/jee.4.467
    [3]
    麻素红, 张进, 沈学顺, 等.2016年GRAPES_TYM改进及对台风预报影响.应用气象学报, 2018, 29(3):257-269. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180301&flag=1
    [4]
    黄先香, 俞小鼎, 炎利军, 等.广东两次台风龙卷的环境背景和雷达回波对比.应用气象学报, 2018, 29(1):70-83. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180107&flag=1
    [5]
    陈雯超, 宋丽莉, 王志春, 等.不同天气条件下脉冲激光风廓线仪测风性能.应用气象学报, 2017, 28(3):327-339. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170307&flag=1
    [6]
    高志球, 王介民, 马耀民, 等.不同下垫面的粗糙度和中性曳力系数研究.高原气象, 2000, 19(1):17-24. doi:  10.3321/j.issn:1000-0534.2000.01.003
    [7]
    包能胜, 刘军峰, 倪维斗, 等.新疆达坂城风电场风能资源特性分析.太阳能学报, 2006, 27(11):1073-1077. doi:  10.3321/j.issn:0254-0096.2006.11.001
    [8]
    王丙兰, 胡非, 程雪玲, 等.边界层局地相似理论在草原下垫面的适用性检验.高原气象, 2012, 31(1):28-37. http://d.old.wanfangdata.com.cn/Periodical/gyqx201201002
    [9]
    薛桁, 朱瑞兆, 冯守忠, 等.我国北部草原地区近地层平均风特性分析.太阳能学报, 2002, 13(3):232-238. http://www.cnki.com.cn/Article/CJFDTotal-TYLX199203003.htm
    [10]
    郅伦海, 李秋胜, 胡非.城市地区近地强风特性实测研究.湖南大学学报(自然科学版), 2009, 36:8-12. http://d.old.wanfangdata.com.cn/Periodical/hndxxb200902002
    [11]
    Zhao W, Zhang N, Sun J, et al.Evaluation and parameter-sensitivity study of a single-layer urban canopy model (SLUCM) with measurements in Nanjing, China.Journal of Hydrometeorology, 2014, 15(3):1078-1090. doi:  10.1175/JHM-D-13-0129.1
    [12]
    杨璐, 韩丰, 陈明轩, 等.基于支持向量机的雷暴大风识别方法.应用气象学报, 2018, 29(6):680-689. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180604&flag=1
    [13]
    Yao Zengquan, Li Zhibian.The Characteristics of turbulence and dispersion in surface layer of coastal region.Journal of Hydrodynamics, 1992, 3:67-78. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_493a16939b6d2903c00c884890d5ddf5
    [14]
    黄菲, 马应生, 黄健.春季华南沿海海-气边界层动力参数的观测研究.中国海洋大学学报, 2011, 41(7/8):1-8. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201107001
    [15]
    张翔, 李云波, 张学宏, 等.大连海域近海面湍流结构及谱特征.海洋通报, 2012, 31(1):9-14. doi:  10.3969/j.issn.1001-6392.2012.01.002
    [16]
    高晓梅, 俞小鼎, 王令军, 等.山东半岛两次海风锋引起的强对流天气对比.应用气象学报, 2018, 29(2):245-256. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180210&flag=1
    [17]
    Xu Xiangchun, Xin Jiwu, Liang Guofeng, et al.Observation and analysis of sea surface wind over the Qiongzhou Strait.Journal of Tropical Meteorology, 2010, 16(4):402-408. http://www.cqvip.com/QK/85390X/201004/35914957.html
    [18]
    宋丽莉, 毛慧琴, 汤海燕, 等.广东沿海近地层大风特性的观测分析.热带气象学报, 2004, 20(6):731-736. doi:  10.3969/j.issn.1004-4965.2004.06.014
    [19]
    蒋迪, 黄菲, 黄建.华南海岸带近地层湍流参数特征观测研究.中国海洋大学学报, 2013, 43(12):7-15. http://cdmd.cnki.com.cn/Article/CDMD-10423-1012505205.htm
    [20]
    高会旺, 顾明, 王仁磊, 等.北黄海海域大气湍流强度特征及风速标准差相似性分析.中国海洋大学学报, 2009, 39(4):563-568. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200904002
    [21]
    段亚鹏, 王东海, 刘英."东方之星"翻沉事件强对流天气分析及数值模拟.应用气象学报, 2017, 28(6):666-677. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170603&flag=1
    [22]
    孙燕, 吴海英, 沈树勤, 等.冬春季江苏沿海大风的特征.南京气象学院学报, 2007, 30(5):699-704. doi:  10.3969/j.issn.1674-7097.2007.05.016
    [23]
    Chen Lianshou, Luo Zhexian.Some relations between asymmetric structure and motion of typhoons.Acta Meteor Sinica, 1995, 9(4):412-419. http://www.cnki.com.cn/Article/CJFDTotal-QXXW199504002.htm
    [24]
    张秀芝, 黄秀芬, 李江龙, 等.一百多年来影响黄渤海热带气旋天气气候分析.海洋预报, 1997, 14(4):11-21. http://www.cnki.com.cn/Article/CJFDTOTAL-HYYB704.001.htm
    [25]
    程正泉, 林良勋, 杨国杰, 等.超强台风威马逊快速增强及大尺度环流特征.应用气象学报, 2017, 28(3):318-326. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170306&flag=1
    [26]
    Cao SY, Tamura Y, Kikuchi N, et a1.Wind characteristics of a strong typhoon.Journal of Wind Engineering and Industry Aerodynamics, 2009, 97:11-21. doi:  10.1016/j.jweia.2008.10.002
    [27]
    张光智, 徐祥德, 王继志, 等.采用外场观测试验资料对登陆台风"黄蜂"的风场及湍流特征的观测研究.应用气象学报, 2004, 15(增刊Ⅰ):110-115. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1015.htm
    [28]
    宋丽莉, 毛慧琴, 黄浩辉, 等.登陆台风近地层湍流特征观测分析.气象学报, 2005, 63(6):915-921. doi:  10.3321/j.issn:0577-6619.2005.06.008
    [29]
    黄世成, 周嘉陵, 王咏青, 等.两次台风过程近地层湍流度和阵风因子分析.气象科学, 2009, 29(4):454-460. doi:  10.3969/j.issn.1009-0827.2009.04.004
    [30]
    周福, 蒋璐璐, 涂小萍, 等.浙江省几种灾害性大风近地面阵风系数特征.应用气象学报, 2017, 28(1):119-128. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170111&flag=1
    [31]
    张容焱, 张秀芝, 徐宗焕, 等.台风影响下的正常湍流模型(NTM)设计.太阳能学报, 2014, 35(6):1075-1079. doi:  10.3969/j.issn.0254-0096.2014.06.026
    [32]
    MakinVK.A note on the drag of the sea surface at hurricane winds.Bound Layer Meteor, 2005, 115(1):169-176. doi:  10.1007/s10546-004-3647-x
    [33]
    Wang B L, Hu F, Cheng X L.Wind gust and turbulence statistics of typhoon in south China.Acta Meteor Sinica, 2010, 1:113-127. http://www.cnki.com.cn/Article/CJFDTotal-QXXW201101009.htm
    [34]
    王志春, 植石群, 丁凌云.强台风纳沙(1117)近地层风特性观测分析.应用气象学报, 2013, 24(5):595-605. doi:  10.3969/j.issn.1001-7313.2013.05.009
    [35]
    万定祥, 陈宁, 彭军, 等.ZQZ-TF型风向传感器电路剖析及维修方法.气象科技, 2015, 13(1):168-171. doi:  10.3969/j.issn.1671-6345.2015.01.028
    [36]
    吴增茂, 孙士才.近海工程环境应用中各种风资料的平均时间分析.海岸工程, 1995, 14(3):8-12. http://www.cqvip.com/Main/Detail.aspx?id=1764171
    [37]
    董双林.中国的阵风极值及其统计研究.气象学报, 2001, 59(3):327-333. http://d.old.wanfangdata.com.cn/Periodical/qxxb200103007
    [38]
    中国气象局.地面气象观测规范.北京:气象出版社, 2003.
    [39]
    陈雯超, 宋丽莉, 植石群, 等.不同下垫面的热带气旋强风阵风系数研究.中国科技(技术科学), 2011, 41(11):1449-1459. http://d.old.wanfangdata.com.cn/Conference/9190875
    [40]
    张容焱, 张秀芝, 杨校生, 等.台风莫拉克(0908)影响期间近地层风特征.应用气象学报, 2012, 23(2):184-194. doi:  10.3969/j.issn.1001-7313.2012.02.007
    [41]
    许向春, 辛吉武, 邢旭煌, 等.琼州海峡南岸近地面层大风观测分析.热带气象学报, 2013, 29(3):481-488. doi:  10.3969/j.issn.1004-4965.2013.03.015
    [42]
    李鸿秀, 朱瑞兆, 王蕊, 等.不同地形风电场湍流强度日变化和年变化分析.太阳能学报, 2014, 35(11):2327-2333. doi:  10.3969/j.issn.0254-0096.2014.11.039
    [43]
    许向春, 辛吉武, 梁国锋, 等.琼州海峡海面风场特征的观测分析.热带气象学报, 2011, 27(1):118-124. doi:  10.3969/j.issn.1004-4965.2011.01.014
    [44]
    中国气象局.热带气旋年鉴2009.北京:气象出版社, 2011.
    [45]
    中国气象局.热带气旋年鉴2010.北京:气象出版社, 2012.
    [46]
    中国气象局.热带气旋年鉴2011.北京:气象出版社, 2013.
    [47]
    中国气象局.热带气旋年鉴2012.北京:气象出版社, 2014.
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (4195) PDF downloads(166) Cited by()
    • Received : 2018-10-08
    • Accepted : 2018-12-25
    • Published : 2019-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint