You Jin, Zheng Dong, Yao Wen, et al. Spatio-temporal scale and optical radiance of flashes over East Asia and Western Pacific Areas. J Appl Meteor Sci, 2019, 30(2): 191-202. DOI:  10.11898/1001-7313.20190206.
Citation: You Jin, Zheng Dong, Yao Wen, et al. Spatio-temporal scale and optical radiance of flashes over East Asia and Western Pacific Areas. J Appl Meteor Sci, 2019, 30(2): 191-202. DOI:  10.11898/1001-7313.20190206.

Spatio-temporal Scale and Optical Radiance of Flashes over East Asia and Western Pacific Areas

DOI: 10.11898/1001-7313.20190206
  • Received Date: 2018-10-22
  • Rev Recd Date: 2018-12-24
  • Publish Date: 2019-03-31
  • Distributions and correlations of flash properties including duration, length, footprint and radiance are investigated in the east Asia and western Pacific areas of 18°-36°N, 70°-160°E and six specially chosen regions (Region 1-6) within it, by analyzing data of lightning imaging sensor (LIS) aboard Tropical Rainfall Measuring Mission (TRMM) satellite from 2002 to 2014. While the flash density over land is generally greatest, followed by offshore waters and deep ocean, the spatial scale and radiance of flash over the deep ocean is the greatest, followed by offshore waters and land, and the duration of flash over offshore waters is the longest, followed by the deep ocean and land. Regions with the largest flash density, duration, spatial extent and radiance are the southern Himalayan front, offshore waters near the east coast of China, deep Pacific Ocean in the southern part of study area and ocean to the east of Japan, respectively. Meanwhile, the flash duration, spatial extent and radiance always have the smallest values over the Tibet Plateau and the southern Himalayan front. In most regions, based on samples during periods of 0900-1400 LT and 1800-0600 LT, the monthly variation of the flash spatial size and radiance is roughly unanimous, except for the ocean to the east of Japan. Inverse correlations of flash activity with flash spatial scale and radiance in the monthly variation is relatively obvious over land. In addition, it is found that some flash properties over some regions in monthly variation are different between periods of 0900-1400 LT and 1800-0600 LT. The flash spatial-temporal scale and the radiance follow lognormal distributions. Relative to the flash over ocean, properties of flash over land tend to concentrate toward smaller values. During 1800-0600 LT when the LIS is of relatively better performance, the median range of flash properties in 6 chosen regions are:Flash duration from 0.18 to 0.29 s, length from 12 to 21 km, and radiance from 0.11 to 0.52 J·m-2·sr-1·μm-1. Correlation analysis between different properties of flash show that relationships between flash properties during 1800-0600 LT are better than those during 0900-1400 LT, and the best correlation is between length and footprint, because they both represent the spatial scale of flash. Relationships between flash spatial scale and radiance are also strong, but the flash duration has weak correlations with flash spatial scale or radiance.
  • Fig. 1  The topographic map of target area and six target regions(the shaded denotes terrain)

    Fig. 2  Diurnal variations of the minimum detectable flash event radiances in six target regions from 2002 to 2014

    Fig. 3  Spatial distributions of the flash density from 1998 to 2013 (statistical grid box is 2° ×2°)

    Fig. 4  Spatial distributions of flash properties from 2002 to 2014(statistical grid box is 2° × 2°) (a)duration(unit:s), (b)length(unit:km), (c)footprint(unit:km2), (d)radiance(unit:J·m-2·sr-1·μm-1)

    Fig. 5  Monthly median values of flash parameters in different regions during 0900-1400 LT from 2002 to 2014

    Fig. 6  Monthly median values of flash parameters in different regions during 1800-0600 LT from 2002 to 2014

    Fig. 7  Probability (columns) and cumulative probability(lines) distributions of flash properties during 0900-1400 LT from 2002 to 2014

    Fig. 8  Probability(columns) and cumulative probability(lines) distributions of flash properties during 1800-0600 LT from 2002 to 2014

    Table  1  Statistics of flash properties during 0900-1400 LT from 2002 to 2014

    地区 持续时间/s 通道延展距离/km 光辐射能/(J·m-2·sr-1·μm-1)
    平均值 中值 第90百分位数 平均值 中值 第90百分位数 平均值 中值 第90百分位数
    区域1 0.19 0.16 0.39 12 11 19 0.39 0.17 0.83
    区域2 0.23 0.18 0.48 13 11 21 0.47 0.17 0.97
    区域3 0.27 0.22 0.54 17 14 29 0.86 0.29 1.89
    区域4 0.34 0.28 0.70 18 16 32 1.37 0.46 3.16
    区域5 0.29 0.24 0.61 20 17 36 1.42 0.53 3.56
    区域6 0.27 0.22 0.58 20 17 34 2.47 0.62 5.96
    DownLoad: Download CSV

    Table  2  Statistics of flash properties during 1800-0600 LT from 2002 to 2014

    地区 持续时间/s 通道延展距离/km 光辐射能/(J·m-2·sr-1·μm-1)
    平均值 中值 第90百分位数 平均值 中值 第90百分位数 平均值 中值 第90百分位数
    区域1 0.22 0.18 0.46 16 14 25 0.42 0.14 0.90
    区域2 0.24 0.18 0.51 14 12 23 0.37 0.11 0.79
    区域3 0.31 0.26 0.64 18 16 32 0.82 0.24 1.93
    区域4 0.34 0.29 0.71 20 18 35 1.13 0.33 2.76
    区域5 0.30 0.25 0.64 24 21 42 1.51 0.51 3.87
    区域6 0.28 0.23 0.60 22 19 38 2.30 0.52 5.38
    DownLoad: Download CSV

    Table  3  Correlations and goodness of fitting among flash properties during 0900-1400 LT from 2002 to 2014

    闪电属性 持续时间/s 通道延展距离/km 通道区域面积/km2 光辐射能/
    (J·m-2·sr-1·μm-1)
    持续时间(D/s) r2=0.17 r2=0.18 r2=0.34
    通道延展距离(L/km) D=-177+166lnL r2=0.87 r2=0.62
    通道区域面积(A/km2) D=-391+122lnA L=0.418A0.659 r2=0.59
    光辐射能(R/
    (J·m-2·sr-1·μm-1))
    R=0.11e(3.47×10-3D) R=2.03×10-3L1.91 R=2.86×10-4A1.32
    DownLoad: Download CSV

    Table  4  Correlations and goodness of fitging among flash properties during 1800-0600 LT from 2002 to 2014

    闪电属性 持续时间/s 通道延展距离/km 通道区域面积/km2 光辐射能/
    (J·m-2·sr-1·μm-1)
    持续时间(D/s) r2=0.22 r2=0.24 r2=0.41
    通道延展距离(L/km) D=-268+203lnL r2=0.90 r2=0.68
    通道区域面积(A/km2) D=-519+147lnA L=0.413A0.660 r2=0.65
    光辐射能(R/
    (J·m-2·sr-1·μm-1))
    R=0.066e3.98×10-3D R=5.47×10-4L2.20 R=5.89×10-5A1.51
    DownLoad: Download CSV
  • [1]
    郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi:  10.3969/j.issn.1001-7313.2010.03.004
    [2]
    高燚, 张义军, 张文娟, 等.我国雷击致人伤亡特征及易损度评估区划.应用气象学报, 2012, 23(3):294-303. doi:  10.3969/j.issn.1001-7313.2012.03.005
    [3]
    张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140501&flag=1
    [4]
    冯桂力, 黎清才.山东地区闪电的特征分析.应用气象学报, 2002, 13(3):347-355. doi:  10.3969/j.issn.1001-7313.2002.03.010
    [5]
    郑栋, 吕伟涛, 张义军, 等.北京及其周边地区夏季地闪活动时空特征分析.应用气象学报, 2005, 16(5):638-644. doi:  10.3969/j.issn.1001-7313.2005.05.010
    [6]
    齐鹏程, 郑栋, 张义军, 等.青藏高原闪电和降水气候特征及时空对应关系.应用气象学报, 2016, 27(4):488-497. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160412&flag=1
    [7]
    Yang X, Sun J, Li W.An analysis of cloud-to-ground lightning in China during 2010-13. Wea Forecasting, 2015, 30(6):1537-1550. doi:  10.1175/WAF-D-14-00132.1
    [8]
    Zheng D, Zhang Y, Meng Q, et al.Climatological comparison of small- and large-current cloud-to-ground lightning flashes over Southern China. J Climate, 2016, 29(8):2831-2848. doi:  10.1175/JCLI-D-15-0386.1
    [9]
    Zheng D, Zhang Y, Meng Q, et al.Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy. Adv Atmos Sci, 2016, 33(3):365-376. http://d.wanfangdata.com.cn/Periodical_dqkxjz-e201603009.aspx
    [10]
    Bruning E C, MacGorman D R.Theory and observations of controls on lightning flash size spectra. Atmos Sci, 2013, 70(12):4012-4029. doi:  10.1175/JAS-D-12-0289.1
    [11]
    Zheng D, MacGorman D R.Characteristics of flash initiations in a supercell cluster with tornadoes. Atmos Res, 2016, 167:249-264. doi:  10.1016/j.atmosres.2015.08.015
    [12]
    Zhang Z, Zheng D, Zhang Y, et al.Spatial-temporal characteristics of lightning flash size in a supercell storm. Atmos Res, 2017, 197:201-210. doi:  10.1016/j.atmosres.2017.06.029
    [13]
    Chronis T, Lang T, Koshak W, et al.Diurnal characteristics of lightning flashes detected over the So Paulo lightning mapping array. J Geophys Res Atmos, 2015, 120(23):11799-11808. doi:  10.1002/2015JD023960
    [14]
    Peterson M, Deierling W, Liu C, et al.The properties of optical lightning flashes and the clouds thy illuminate. J Geophys Res Atmos, 2017, 122(1):423-442. doi:  10.1002/2016JD025312
    [15]
    Beirle S, Koshak W, Blakeslee R, et al.Global patterns of lightning properties derived by OTD and LIS. Nat Hazards Earth Syst Sci, 2014, 14:2715-2726. doi:  10.5194/nhess-14-2715-2014
    [16]
    Peterson M, Liu C.Characteristics of lightning flashes with exceptional illuminated areas, durations, and optical powers and surrounding storm properties in the tropics and inner subtropics. J Geophys Res Atmos, 118(20):11727-11740. doi:  10.1002/jgrd.50715
    [17]
    Cecil D J, Buechler E B, Richard J B.Gridded lightning climatology from TRMM-LIS and OTD:Dataset description. Atmos Res, 2014, 135-136:404-414. doi:  10.1016/j.atmosres.2012.06.028
    [18]
    Boccippio D J, Koshak W J, Blakeslee R J.Performance assessment of the optical transient detector and lightning imaging sensor.Part I:Predicted diurnal variability. J Atmos Oceanic Technol, 2002, 19(9):1318-1332. doi:  10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
    [19]
    Montanyà J, Fabró F, van der Velde O, et al.Global distribution of winter lightning:A threat to wind turbines and aircraft. Nat Hazards Earth Syst Sci, 2016, 16:1465-1472. doi:  10.5194/nhess-16-1465-2016
    [20]
    张志孝, 郑栋, 张义军, 等.闪电初始阶段和尺度判别方法及其特征.应用气象学报, 2017, 28(4):414-426. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170403&flag=1
    [21]
    Wang F, Zhang Y, Liu H, et al.Characteristics of cloud-to-ground lightning strikes in the stratiform regions of mesoscale convective systems. Atmos Res, 2016, 178-179:207-216. doi:  10.1016/j.atmosres.2016.03.021
    [22]
    江吉喜, 项续康, 范梅珠.青藏高原夏季中尺度强对流系统的时空分布.应用气象学报, 1996, 7(4):473-478. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960472&flag=1
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(4)

    Article views (4556) PDF downloads(131) Cited by()
    • Received : 2018-10-22
    • Accepted : 2018-12-24
    • Published : 2019-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint