Liu Pei, Yin Yan, Chen Qian, et al. Numerical simulation of hygroscopic seeding effects on warm convective clouds and rainfall reduction. J Appl Meteor Sci, 2019, 30(2): 211-222. DOI:  10.11898/1001-7313.20190208.
Citation: Liu Pei, Yin Yan, Chen Qian, et al. Numerical simulation of hygroscopic seeding effects on warm convective clouds and rainfall reduction. J Appl Meteor Sci, 2019, 30(2): 211-222. DOI:  10.11898/1001-7313.20190208.

Numerical Simulation of Hygroscopic Seeding Effects on Warm Convective Clouds and Rainfall Reduction

DOI: 10.11898/1001-7313.20190208
  • Received Date: 2018-11-11
  • Rev Recd Date: 2019-01-08
  • Publish Date: 2019-03-31
  • With the rapid development of social economy, the frequency of various large-scale and important events is also getting higher and higher. In order to host events more smoothly, the need of society for artificial precipitation suppression technologies during major events is also urgent. Hygroscopic seeding is an important way to suppress precipitation artificially. Although previous research on artificial precipitation suppression basically confirms that the hygroscopic nuclei of smaller than 1 μm can inhibit the convective cloud precipitation, how to use it more effectively to achieve the best effect is still a difficult problem in precipitation research. In order to provide some useful theoretical references for artificial precipitation suppression operations, a two-dimensional slab-symmetric detailed spectral bin microphysical model of Tel Aviv University in Israel is used to simulate the warm shallow convective cloud and precipitation in East China at about 1600 BT on 4 September 2016. The height of the strong radar reflectivity center and the range of high radar reflectivity are basically consistent with observations. The cloud seeding experiments with hygroscopic nuclei smaller than 1 μm are conducted in order to examine sensitivities of seeding effects to seeding time, seeding height and seeding amounts of particles, respectively. Results show that the early seeding in the cloud development stage can lead to more significant effect on rainfall suppression. The earlier the seeding time is, the stronger the inhibition of the growth of large particles. As the seeding time goes backwards, the particle size segment with the most significant inhibition shifts to smaller particle size; the effect of rainfall suppression is more obvious when seeding is carried out just below the area with large supersaturation in the center of cloud. Since a large number of hygroscopic nuclei seeded here enter the supersaturation zone, they are activated to be small cloud droplets, and the cloud water conversion and collision process are suppressed. The reduction rate of ground accumulated precipitation reaches 23.3% when the seeding concentration is 350 cm-3. In addition, with the increase of seeding amounts of hygroscopic nuclei, the precipitation suppression effect is more significant, and the rain is even eliminated. Therefore, seeding hygroscopic nuclei smaller than 1 μm properly in warm shallow convective clouds can achieve expected results of reducing or eliminating rain.
  • Fig. 1  Comparison of observed and simulated radar echo intensity vertical profiles at Hangzhou station on 4 Sep 2016

    (a)observation at 1555 BT, (b)observation at 1600 BT, (c)observation at 1617 BT, (d)simulation at the 34th minute, (e)simulation at the 39th minute (the contour denotes 0℃), (f)simulation at the 56th minute

    Fig. 2  The maximum liquid-water mixing ratio at each height in the core area of the cloud(the white point is the location of the maximum liquid-water mixing ratio in the cloud development stage)(a) and the average ground rainfall rate(b)

    Fig. 3  The average ground rainfall rate(a) and the droplet mass spectra of grid where liquid-water mixing ratio of natural cloud during development stage is maximum (position of white dot in Fig. 2a)(b) in sensitive experiments of different seeding time

    Fig. 4  The average ground rainfall rate(a) and the maximum collision and collection rate of droplets in the core area of cloud(b) in sensitive experiments of different seeding height

    Fig. 5  The maximum number concentration and mass concentration of cloud droplets in the cloud core area with the average droplet number concentration and mass concentration spectra in the horizontal center of cloud after seeding (the 18th minute of simulation) in sensitive experiments of different seeding height

    (a)maximum number concentration, (b)maximum mass concentration, (c)average number concentration spectra, (d)average mass concentration spectra

    Fig. 6  The wind field, vapor supersaturation boundary (the solid line, relative humidity is 100%) and cloud boundary (the dotted line, the grid of cloud water mixing ratio larger than 0.01 g·kg-1 is considered to be cloud area) at the 14th minute of simulation

    Fig. 7  The average ground rainfall rate(a) and the maximum collision and collection rate of droplets in the core area of cloud(b) in sensitive experiments of different seeding amounts

    Fig. 8  The droplet mass spectra of grid where liquid-water mixing ratio of natural cloud during development stage is maximum (position of white dot in Fig. 2a) in sensitive experiments of different seeding amounts

    Table  1  Natural and seeded cloud condensation nuclei spectra parameters

    模态 自然谱 播撒谱
    ni/cm-3 Ri/μm lgσi ni/cm-3 Ri/μm lgσi
    1 670 0.09 0.2 350 0.15 0.2
    2 0.046 1.7 0.3 0.245 0.5 0.4
    3 8.05×10-4 5 0.6
    DownLoad: Download CSV

    Table  2  Parameters and results of sensitive experiments

    试验 时间(积分时间) 高度/km 剂量/cm-3 总降水变化/% 雨强峰值时间(积分时间)
    C1 第13—17分钟 1.5 350 -15.7 第45分钟
    C2 第17—21分钟 1.5 350 -13.0 第44分钟
    C3 第21—25分钟 1.5 350 -7.2 第44分钟
    C4 第25—29分钟 1.5 350 -2.2 第44分钟
    C5 第13—17分钟 1.8 350 -23.3 第45分钟
    C6 第13—17分钟 2.4 350 -4.7 第44分钟
    C7 第13—17分钟 1.8 1750 -71.0 第46分钟
    C8 第13—17分钟 1.8 3500 -92.7
    C9 第13—17分钟 1.8 7000 -99.0
    DownLoad: Download CSV
  • [1]
    章澄昌.人工影响天气概论.北京:气象出版社, 1992:204-207.
    [2]
    毛节泰, 郑国光.对人工影响天气若干问题的探讨.应用气象学报, 2006, 17(5):643-646. doi:  10.3969/j.issn.1001-7313.2006.05.015
    [3]
    王广河, 姚展予.人工增雨综合技术研究.应用气象学报, 2003, 14(增刊Ⅰ):1-10. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1001
    [4]
    姚展予.中国气象科学研究院人工影响天气研究进展回顾.应用气象学报, 2006, 17(6):786-795. doi:  10.3969/j.issn.1001-7313.2006.06.016
    [5]
    何晖, 金华, 李宏宇, 等.2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果.气候与环境研究, 2012, 17(1):46-58. doi:  10.3878/j.issn.1006-9585.2011.10043
    [6]
    倪思聪, 魏鸣.2014年8月南京青奥会开幕式人工减雨作业回波分析.气象科学, 2018, 38(1):104-112. http://d.old.wanfangdata.com.cn/Periodical/qxkx201801012
    [7]
    Kim Wonheung.Numerical Simulation of Hygroscopic Seeding Experiment over the Korean Peninsula Using WRF Model with Hygroscopic Seeding Parameterization.98th American Meteorological Society Annual Meeting, 2018.
    [8]
    李淑日, 胡志晋, 王广河. CAMS三维对流云催化模式的改进及个例模拟.应用气象学报, 2003, 14(增刊Ⅰ):78-91. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1010
    [9]
    于达维, 何观芳, 周勇, 等.三维对流云催化模式及其外场试用.应用气象学报, 2001, 12(增刊Ⅰ):122-132. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2001z1016
    [10]
    黄梦宇, 张蔷, 魏强, 等.2005年北京消云试验微物理检验.气象, 2008, 34(增刊Ⅰ):191-194. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX2008S1034.htm
    [11]
    田海军, 景丽, 刘力威, 等.2008北京残奥会闭幕日飞机消云作业分析.气象, 2008, 34(增刊Ⅰ):131-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802528055
    [12]
    Jiang H, Xue H, Amit T, et al.Aerosol effects on the lifetime of shallow cumulus.Geophys Res Lett, 2006, 33(14):110-118. doi:  10.1029/2006GL026024/pdf
    [13]
    Andreaem O, Rosenfeld D, Artaxo P, et al.Smoking rain clouds over the Amazon.Science, 2004, 303:1337-1342. doi:  10.1126/science.1092779
    [14]
    Segal Y, Khain A, Pinsky M, et al.Effects of atmospheric aerosol on precipitation in cumulus clouds as seen from 2000-bin cloud parcel microphysical model:Sensitivity study with cloud seeding applications.Q J R Meteor Soc, 2004, 130:561-582. doi:  10.1256/qj.02.168
    [15]
    Rosenfeld D.Suppression of rain and snow by urban and industrial air pollution.Science, 2000, 287:1793-1796. doi:  10.1126/science.287.5459.1793
    [16]
    Rudich Y, Khersonsky O, Rosenfeld D.Treating clouds with a grain of salt.Geophys Res Lett, 2002, 29(22):17-1-17-4. doi:  10.1029/2002GL016055
    [17]
    Rosenfeld D, Dai J, Yu X, et al.Inverse relations between amounts of air pollution and orographic precipitation.Science, 2007, 315:1396-1398. doi:  10.1126/science.1137949
    [18]
    Rosenfeld D, Lahav R, Khain A, et al.The role of sea spray in cleansing air pollution over ocean via cloud processes.Science, 2002, 297:1667-1670. doi:  10.1126/science.1073869
    [19]
    杨宗甄, 陈宝君, 银燕.三江源地区对流云吸湿性催化的数值模拟.气象科学, 2012, 32(1):9-17. doi:  10.3969/2012jms.0026
    [20]
    Cooper W A, Bruintjes R T, Mather G K.Calculations pertaining to hygroscopic seeding with flares.J Applied Meteor, 1997, 36(36):1449-1469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=453cb156ad78896bf49a636861851ed5
    [21]
    Yin Y, Levin Z, Reisin T, et al.Seeding convective clouds with hygroscopic flares:Numerical simulations using a cloud model with detailed microphysics.J Applied Meteor, 2000, 39(9):1460-1472. doi:  10.1175/1520-0450(2000)039<1460:SCCWHF>2.0.CO;2
    [22]
    Hashimoto A, Kuba N, Murakami M.Research on precipitation enhancement by using numerical model.Earozoru Kenkyu, 2015, 30(67):32-39.
    [23]
    Vladimirov S A.Numerical simulation of action on the process of precipitation formation in convective clouds by seeding with hygroscopic aerosols.Russian Meteorology & Hydrology, 2005, 30(1):45-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31c300f41cc9fba4fde2330e16405c0e
    [24]
    Tzivion S, Reisin T, Levin Z.Numerical simulation of hygroscopic seeding in a convective cloud.J Applied Meteor, 2010, 33:252-267. http://adsabs.harvard.edu/abs/1994JApMe..33..252T
    [25]
    孙旭东, 秦莹, 梁谷.暖层云人工催化降雨落区的数值模拟.高原气象, 1993, 12(3):378-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000971160
    [26]
    胡志晋, 蔡利栋.积云暖雨过程及其盐粉催化的参数化数值模拟.大气科学, 1979, 3(4):334-342. doi:  10.3878/j.issn.1006-9895.1979.04.05
    [27]
    Reisin T, Levin Z, Tzivion S.Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics.Part Ⅰ:Description of the model.J Atmos Sci, 1996, 53(3):497-520. http://adsabs.harvard.edu/abs/1996JAtS...53.1815R
    [28]
    封彩云, 郭学良, 王式功.吸湿性粒子的播撒浓度对降水的影响//第27届中国气象学会年会人工影响天气与云雾物理新技术理论及进展分会场论文集, 2010.
    [29]
    楼小凤, 何观芳, 胡志晋, 等.三维对流云盐粉催化模式的发展和催化模拟试验.高原气象, 2013, 32(2):491-500. http://d.old.wanfangdata.com.cn/Periodical/gyqx201302017
    [30]
    苏正军, 郑国光, 酆大雄.吸湿性物质催化云雨的研究进展.高原气象, 2009, 28(1):227-232. http://d.old.wanfangdata.com.cn/Periodical/gyqx200901029
    [31]
    何观芳, 胡志晋, 楼小凤.盐粉催化对流云降水模式及个例试验小结//全国云降水与人工影响天气科学会议暨中国人工影响天气事业50周年纪念大会, 2008.
    [32]
    叶家东, 范蓓芬, 杜京朝.人工增雨试验中的反效果问题.应用气象学报, 1998, 9(3):336-344. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980348&flag=1
    [33]
    楼小凤, 师宇, 卢广献.一次降雹过程的AgI系列催化模拟研究.应用气象学报, 2016, 27(2):129-139. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160201&flag=1
    [34]
    吴明林, 胡志晋.人工催化暖云底积雨云的个例数值试验.应用气象学报, 1990, 1(2):142-152. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900220&flag=1
    [35]
    樊志超, 周盛, 汪玲, 等.湖南秋季积层混合云系飞机人工增雨作业方法.应用气象学报, 2018, 29(2):200-216. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180207&flag=1
    [36]
    Yin Y, Levin Z, Reisin T G, et al.The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds-A numerical study.Atmos Res, 2000, 53(1-3):91-116. doi:  10.1016/S0169-8095(99)00046-0
    [37]
    杨军, 陈宝君, 银燕, 等.云降水物理学.北京:气象出版社, 2011:132-133.
    [38]
    张涛, 郑永光, 毛旭, 等.2016年9月4日下午"杭州G20峰会"期间短时阵雨天气成因与预报难点.气象, 2018, 44(1):42-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201801004
    [39]
    包贞, 冯银厂, 焦荔, 等.杭州市大气PM2.5和PM10污染特征及来源解析.中国环境监测, 2010, 26(2):44-48. doi:  10.3969/j.issn.1002-6002.2010.02.012
    [40]
    沈建东, 焦荔, 徐昶, 等.杭州市大气细颗粒物分粒径来源解析.中国科学院大学学报, 2014, 31(3):367-373. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201403011
    [41]
    荣艳敏, 银燕.对流云对大气气溶胶和相对湿度变化响应的数值模拟.大气科学, 2010, 34(4):815-826. doi:  10.3878/j.issn.1006-9895.2010.04.13
    [42]
    金华,黄梦宇,于潇洧,等.一次飞机播撒吸湿性焰剂试验的微物理探测浅析.气候与环境研究,2012,17(6):704-710. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj201206007
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (3194) PDF downloads(166) Cited by()
    • Received : 2018-11-11
    • Accepted : 2019-01-08
    • Published : 2019-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint