Dong Xiaoyun, Yu Jinhua, Liang Xinzhong, et al. Bias correction of summer extreme precipitation simulated by CWRF model over China. J Appl Meteor Sci, 2019, 30(2): 223-232. DOI:  10.11898/1001-7313.20190209.
Citation: Dong Xiaoyun, Yu Jinhua, Liang Xinzhong, et al. Bias correction of summer extreme precipitation simulated by CWRF model over China. J Appl Meteor Sci, 2019, 30(2): 223-232. DOI:  10.11898/1001-7313.20190209.

Bias Correction of Summer Extreme Precipitation Simulated by CWRF Model over China

DOI: 10.11898/1001-7313.20190209
  • Received Date: 2018-08-20
  • Rev Recd Date: 2018-11-05
  • Publish Date: 2019-03-31
  • Accurate forecast of extreme precipitation plays an important role in guiding the national economy and people's livelihood. The newly developed Climate-Weather Research and Forecasting model (CWRF) is applied to the operational forecasting experiment of China National Climate Center. It provides valuable scientific basis for improving the operational prediction for extreme precipitation.CWRF integrates a comprehensive ensemble of alternate parameterization schemes for each of key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation. This facilitates the use of an optimized physics ensemble approach to improve weather and climate prediction.Daily precipitation data simulated by CWRF from June to August during 1980-2015 and the observation by China Meteorological Administration are used to evaluate the performance of various parameterization schemes, and cumulative distribution function transform (CDFt) correction method is introduced. Based on the CDFt, the probability bias correction model XCDFt is proposed for extreme rainfall by introducing generalized Pareto distribution (GPD) and results are assessed. It shows that Morrison-aerosol parameterization scheme of CWRF model can simulate the spatial distribution of extreme precipitation better as well as correct daily precipitation by CDFt.Simulated results of Morrison-aerosol for daily precipitation threshold and super-threshold samples in summer in North China, Central China and East China are similar to those observed in this scheme. In Changsha, Jinan, Nanjing, and Nanning, GPD characterizes the distribution of each extreme precipitation well. It shows that XCDFt can preserve the CDF form of the observed calibrated precipitation and acquire the small change from the calibration to validations. XCDFt can improve the consistency between model simulation and observation in regional extreme precipitation recurrence levels. In North China, Central China and South China, after model simulation correction by XCDFt, the 20-year recurrence interval of extreme precipitation are closer to the observation, which shows that the revised data are more reliable.Error correction can only be used as a supplementary means to improve extreme precipitation prediction, though. The precision description of model physical process and the improvement of model resolution are the key to improve extreme precipitation prediction level.
  • Fig. 1  Comparison of daily precipitation simulated by CWRF and corrected by CDFt over China under different schemes

    (a)Brier score, (b)significance score, (c)root mean square error

    Fig. 2  The cumulative ranking of evaluation indicators for different parameterized schemes of simulation, correction and comprehensiveness for daily precipitation

    Fig. 3  The threshold of the 95th percentile and the number of extreme precipitation days over threshold in summer during the validation period over China

    (a)simulated threshold by CWRF(b)observed threshold, (c)the number of days simulated by CWRF, (d)the number of days observed

    Fig. 4  GPD fitting effect of the observed extreme rainfall during the validation period in Nanjing

    Fig. 5  The cumulative probability distribution of extreme precipitation simulated by CWRF compared to observation in summer in the bias correction model XCDFt during the calibration and validation periods of four representation areas

    Fig. 6  Quantile-quantile plot of extreme precipitation simulated by CWRF compared to observation in summer during the validation period of four representation areas

    Fig. 7  Spatial distribution of 20-year return level of extreme precipitation simulated, XCDFt corrected and observed over South China, Central China and North China during the validation period

    Table  1  Parameterization schemes of CWRF

    方案 积云对流参数化 微物理过程参数化
    C1 ECP & UW GSFCGCE
    C2 KFeta[25] GSFCGCE
    C3 BMJ[26] GSFCGCE
    C4 Grell[27] GSFCGCE
    C5 NSAS[28] GSFCGCE
    C6 Donner[29] GSFCGCE
    C7 Emanuel[30] GSFCGCE
    C8 ECP & UW Lin[31]
    C9 ECP & UW WSM6[32]
    C10 ECP & UW Etamp new[6]
    C11 ECP & UW Thompson[33]
    C12 ECP & UW Thompson-aero[34]
    C13 ECP & UW Morrison[35]
    C14 ECP & UW Morrison-aerosol[6]
    DownLoad: Download CSV
  • [1]
    王静, 余锦华, 何俊琦.江淮地区极端降水特征及其变化趋势的研究.气候与环境研究, 2015, 20(1):80-88. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj201501009
    [2]
    谭桂容, 范艺媛, 牛若芸.江淮地区强降水分型及其环流演变.应用气象学报, 2018, 29(4):396-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180402&flag=1
    [3]
    翟盘茂, 王萃萃, 李威.极端降水事件变化的观测研究.气候变化研究进展, 2007, 3(3):144-148. doi:  10.3969/j.issn.1673-1719.2007.03.004
    [4]
    霍治国, 范雨娴, 杨建莹, 等.中国农业洪涝灾害研究进展.应用气象学报, 2017, 28(6):641-653. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170601&flag=1
    [5]
    甘衍军, 徐晶, 赵平, 等.暴雨致洪预报系统及其评估.应用气象学报, 2017, 28(4):385-398. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170401&flag=1
    [6]
    Liang X Z, Sun C, Zheng X, et al.CWRF performance at downscaling China climate characteristics.Climate Dyn, 2018, 12:1-26. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC027505742/
    [7]
    刘冠州, 梁信忠.新一代区域气候模式(CWRF)国内应用进展.地球科学进展, 2017, 32(7):781-787. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201707011
    [8]
    Liang X Z, Xu M, Yuan X, et al.Regional Climate-weather research and forecasting model (CWRF).Bull Amer Meteor Soc, 2012, 93(9):1363-1387. doi:  10.1175/BAMS-D-11-00180.1
    [9]
    程娅蓓, 任宏利, 谭桂容.东亚夏季风模式跨季预测的EOF-相似误差订正.应用气象学报, 2016, 27(3):285-292. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160303&flag=1
    [10]
    赵琳娜, 刘莹, 包红军, 等.基于重组降水集合预报的洪水概率预报.应用气象学报, 2017, 28(5):544-554. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170503&flag=1
    [11]
    吴启树, 韩美, 刘铭, 等.基于评分最优化的模式降水预报订正算法对比.应用气象学报, 2017, 28(3):306-317. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170305&flag=1
    [12]
    郝民, 龚建东, 田伟红, 等.L波段探空仪湿度数据偏差订正及同化试验.应用气象学报, 2018, 29(5):559-570. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180505&flag=1
    [13]
    卢新玉, 魏鸣, 王秀琴.TRMM月降水量产品在新疆地区的订正.应用气象学报, 2017, 28(3):379-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170311&flag=1
    [14]
    Piani C, Haerter J O, Coppola E.Statistical bias correction for daily precipitation in regional climate models over Europe.Theor Appl Climatol, 2010, 99(1-2):187-192. doi:  10.1007/s00704-009-0134-9
    [15]
    周莉, 江志红.基于转移累积概率分布统计降尺度方法的未来降水预估研究:以湖南省为例.气象学报, 2017, 75(2):223-235. http://d.wanfangdata.com.cn/Periodical/qxxb201702003
    [16]
    Amengual A, Homar V, Romero R, et al.A statistical adjustment of regional climate model outputs to local scales:Application to Platja de Palma, Spain.J Climate, 2012, 25(3):939-957. doi:  10.1175/JCLI-D-10-05024.1
    [17]
    周林, 潘婕, 张镭, 等.概率调整法在气候模式模拟降水量订正中的应用.应用气象学报, 2014, 25(3):302-311. doi:  10.3969/j.issn.1001-7313.2014.03.007
    [18]
    童尧, 高学杰, 韩振宇, 等.基于RegCM4模式的中国区域日尺度降水模拟误差订正.大气科学, 2017, 41(6):1156-1166. http://d.old.wanfangdata.com.cn/Periodical/daqikx201706003
    [19]
    Liang X Z, Choi H I, Kunkel K E, et al.Surface boundary conditions for mesoscale regional climate models.Earth Interactions, 2005, 9(12):305-319. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3231673
    [20]
    Liang X Z, Xu M, Gao W, et al.Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer(MODIS) data.Journal of Geophysical Research Atmospheres, 2005, 110(D11):1341-1355. doi:  10.1029/2004JD005579/full
    [21]
    Khain A, Lang S, Lynn B, et al.Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model.Meteorology & Atmospheric Physics, 2003, 82(1):97-137. http://www.springerlink.com/index/44myc52xcmc3ajxv.pdf
    [22]
    Qiao F, Liang X.Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans.Journal of Advances in Modeling Earth Systems, 2016, 8(1-2):1-23. doi:  10.1002/2015MS000621/pdf
    [23]
    Qiao F, Liang X Z.Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States.Climate Dyn, 2017, 49(1-2):1-23. doi:  10.1007/s00382-016-3323-0
    [24]
    Bretherton C S, Park S S.A new moist turbulence parameterization in the Community Atmosphere Model.J Climate, 2009, 22(12):3422-3448. doi:  10.1175/2008JCLI2556.1
    [25]
    Kain J S.The Kain-Fritsch convective parameterization:An update.J Appl Meteor, 2004, 43:170-181. doi:  10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [26]
    Zaviša I J.The step-mountain Eta coordinate model:Further developments of the convection, viscous sublayer, and turbulence closure schemes.Mon Wea Rev, 1994, 122(5):927-945. doi:  10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
    [27]
    Grell G A, Dévényi D.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques.Geophys Res Lett, 2002, 29(6):587-590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4860bd09a5a2afbdd301cc3ad88e0e06
    [28]
    Han J, Pan H L.Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System.Wea Forecasting, 2011, 26:520-533. doi:  10.1175/WAF-D-10-05038.1
    [29]
    Donner L J.A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects:Thermodynamic and hydrological aspects in a general circulation model.J Climate, 2001(14):3444-3463. doi:  10.1175-1520-0442(2001)014-3444-ACPIMF-2.0.CO%3b2/
    [30]
    Emanuel K A, Ivkovirothman M.Development and evaluation of a convection scheme for use in climate models.J Atmos Sci, 1999, 56(11):1766-1782. doi:  10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
    [31]
    Lin Y L, Farley R D, Orville H D.Bulk Parameterization of the snow field in a cloud model.J Appl Meteor, 1983, 22(6):1065-1092. doi:  10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
    [32]
    Hong S Y, Lim J O J.The WRF single-moment 6-class microphysics scheme (WSM6).Journal of Korean Medical Science, 2006, 42:129-151. http://d.old.wanfangdata.com.cn/Periodical/qxxb-e201802008
    [33]
    Thompson G, Rasmussen R M, Manning K.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.Part I: Description and Sensitivity Analysis.Mon Wea Rev, 2004, 136(12): 5095-5115.
    [34]
    Thompson G, Eidhammer T.A study of aerosol impacts on clouds and precipitation development in a large winter cyclone.J Atmos Sci, 2014, 71(10):3636-3658. doi:  10.1175/JAS-D-13-0305.1
    [35]
    Morrison H, Thompson G, Tatarskii V.Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall Line:Comparison of one- and two-moment schemes.Mon Wea Rev, 2009, 137(3):991-1007. doi:  10.1175/2008MWR2556.1
    [36]
    Michelangeli P A, Vrac M, Loukos H.Probabilistic downscaling approaches:Application to wind cumulative distribution function.Geophys Res Lett, 2009, 36(11):163-182. doi:  10.1029/2009GL038401/full
    [37]
    Kallache M, Vrac M, Naveau P, et al.Nonstationary probabilistic downscaling of extreme precipitation.J Geophys Res, 2011, 116(D5), DOI: 10.1029/2010JD014892.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (5459) PDF downloads(151) Cited by()
    • Received : 2018-08-20
    • Accepted : 2018-11-05
    • Published : 2019-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint