Wu Bin, Lü Weitao, Qi Qi, et al. Optical and electric field observations of two concurrent upward flashes triggered by a positive cloud-to-ground flash. J Appl Meteor Sci, 2019, 30(3): 257-266. DOI:  10.11898/1001-7313.20190301.
Citation: Wu Bin, Lü Weitao, Qi Qi, et al. Optical and electric field observations of two concurrent upward flashes triggered by a positive cloud-to-ground flash. J Appl Meteor Sci, 2019, 30(3): 257-266. DOI:  10.11898/1001-7313.20190301.

Optical and Electric Field Observations of Two Concurrent Upward Flashes Triggered by a Positive Cloud-to-ground Flash

DOI: 10.11898/1001-7313.20190301
  • Received Date: 2018-10-18
  • Rev Recd Date: 2019-01-02
  • Publish Date: 2019-05-31
  • Tall objects are easy to trigger upward flashes. They also provide more opportunities for observation of upward flashes and a suitable platform for analyzing the intiation and development of upward flashes. Upward flashes are usually divided into two types, one is self-initiated and the other is triggered by environment, and the latter type is often related to the activity of positive cloud-to-ground (CG) flash. At present, development characteristics and triggering mechanism of the upward lightning channel are mainly studied based on the image of the extracloud lighting channel, the ground electric field change data and radar echo data. Few examples of mutiple upward flashes triggered by the same positive CG flash on different tall objects have been observed, and detailed characteristics of upward flashes are not well understood.On 16 June 2017, a positive CG flash (single stroke, peak current +141 kA) is recorded by the lightning photoelectric synchronous observation system of Tall Object Lightning Observatory in Guangzhou (TOLOG), triggering upward flashes of two nearby super-high-rise objects. Results show that within about 0.8 ms after the return stroke of the positive CG flash, two upward negative flashes intiate from the Canton Tower (600 m high) and the East Tower (530 m high), which are about 3.9 km and 4.1 km away from the positive CG flash, respectively. The initiation of two upward flashes could be caused by combined effects of the return stroke of positive CG flash, its associated continuing current, and the negative leader in the cloud approching to towers. A total of 7 strokes occur in about 353 ms, 6 strokes on the Canton Tower and 1 stroke on the East Tower, and the leader/return stroke sequence on the Canton Tower occur after the leader/return stroke sequence and the attempt leader on the East Tower, i.e., there is no overlapping between strokes of two upward flashes. The average peak current (-21.4 kA) of return strokes of upward flash initiating from the Canton Tower is about 3 times of the peak current (-7.3 kA) from the East Tower. It's supposed that the negative charge region in the upper cloud of the Canton Tower is wider than that in the upper cloud of the East Tower, and the charge amount is larger. The 2D velocity range of the positive leader of two upward flashes is 9.4×104 to 1.8×106 m·s-1, with an average of 6.9×105 m·s-1.
  • Fig. 1  The still image of lightning channel obtained using a digital SLR camera with an exposure time of 1 s

    Fig. 2  The position of Station-1, Station-2, the initial position of upward flashes and the ground termination point of positive cloud-to-ground flash

    Fig. 3  Four(not all consecutive) images obtained using the high-speed video camera(HC-3, 1000 fps) installed at Station-1(images are inverted and contrast-enhanced)

    (a)-44 ms, (b)-1 ms, (c)1 ms, (d)19 ms

    Fig. 4  Four(not all consecutive) images obtained using the high-speed camera 2(HC-2, 50000 fps) installed at Station-1 (Fig. 4a is inverted, Fig. 4c and Fig. 4d are contrast-enhanced)

    (a)0 μs, (b)20 μs, (c)720 μs, (d) 800 μs

    Fig. 5  Waveforms of changes in channel brightness(a), fast electric field(FA)(b) and slow electric field(SA)(c)(the vertical line denotes the initial time of the positive cloud-to-ground(CG) flash

    (approximately-74 ms), R+CG denotes the return stroke of positive cloud-to-ground flash, RET denotes the upward flash of the East Tower, R1-R6 denote six strokes on the Canton Tower, LET and LCT are attempted leaders of upward flashes on the East Tower and the Canton Tower)

    Fig. 6  Possible scenario of the initiation of two upward flashes

    ("+" denotes positive charge, and "-" denotes negative charge; arrows denote directions of channels extension, ▲ denotes ground termination point of positive cloud-to-ground flash A reported by the GDLLS; circled numbers denote the sequence of different discharge processes)

    Fig. 7  Changes of 2D speed with height of positive leaders of two upward flashes

    Table  1  Parameters of two negative upward flashes

    始发建筑物 回击次序 峰值电流/kA 回击间隔/ms
    东塔 1 -7
    广州塔 1 -16
    2 -10 25.3
    3 -25 34.4
    4 -27 51.6
    5 -21 51.9
    6 -30 68.2
    DownLoad: Download CSV
  • [1]
    Miki M, Rakov V A, Shindo T, et al.Initial stage in lightning initiated from tall objects and in rocket-triggered lightning.Journal of Geophysical Research Atmospheres, 2005, 110(D2), DOI: 10.1029/2003jd004474.
    [2]
    Lu W, Wang D, Zhang Y, et al.Two associated upward lightning flashes that produced opposite polarity electric field changes.Geophys Res Lett, 2009, 36(5):277-291, DOI: 10.1029/2008GL036598.
    [3]
    Zhou H, Diendorfer G, Thottappillil R, et al.Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower.Journal of Geophysical Research Atmospheres, 2012, 117(D8), DOI: 10.1029/2011JD017269.
    [4]
    Jiang R, Qie X, Wu Z, et al.Characteristics of upward lightning from a 325-m-tall meteorology tower.Atmospheric Research, 2014, 149(6):111-119, DOI: 10.1016/j.atmosres.2014.06.007.
    [5]
    Saba M M F, Cummins K L, Warner T A, et al.Positive leader characteristics from high-speed video observations.Geophys Res Lett, 2008, 35(7):243-246, DOI: 10.1029/2007gl033000.
    [6]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.3969/j.issn.1001-7313.2006.05.011
    [7]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.3969/j.issn.1001-7313.2008.04.003
    [8]
    李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.3969/j.issn.1001-7313.2010.01.013
    [9]
    任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.3969/j.issn.1001-7313.2011.02.008
    [10]
    李丹, 张义军, 吕伟涛, 等.闪电先导三维自持发展模式的建立.应用气象学报, 2015, 26(2):203-210. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150208&flag=1
    [11]
    Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35(2):196-199, DOI: 10.1029/2007gl032136.
    [12]
    Berger K.The Earth Flash, Physics of Lightning.1977: 119-190.
    [13]
    Warner T A, Helsdon J H J, Bunkers M J, et al.UPLIGHTS:Upward lightning triggering study.Bull Amer Meteor Soc, 2013, 94(5):631-635, DOI: 10.1175/BAMS-D-11-00252.1.
    [14]
    Heidler F H, Manhardt M, Stimper K.Characteristics of upward positive lightning initiated from the Peissenberg Tower, Germany.IEEE Transactions on Electromagnetic Compatibility, 2015, 57(1):102-111, DOI: 10.1109/TEMC.2014.2359584.
    [15]
    Warner T A, Cummins K L, Orville R E.Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004-2010.Journal of Geophysical Research Atmospheres, 2012, 117(D19), DOI: 10.1029/2012JD018346.
    [16]
    Saba M M F, Schumann C, Warner T A, et al.Upward lightning flashes characteristics from high-speed videos.Journal of Geophysical Research Atmospheres, 2016, 121(14):8493-8505, DOI: 10.1002/2016JD025137.
    [17]
    Miyake K, Suzuki T, Takashima M, et al.Winter lightning on Japan Sea coast-lightning striking frequency to tall structures.IEEE Transactions on Power Delivery, 1990, 5(3):1370-1376, DOI: 10.1109/61.57979.
    [18]
    Warner T A.Observations of simultaneous upward lightning leaders from multiple tall structures.Atmospheric Research, 2012, 117(11):45-54, DOI: 10.1016/j.atmosres.2011.07.004.
    [19]
    Lu W, Chen L, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.Journal of Geophysical Research Atmospheres, 2012, 117(D19), DOI: 10.1029/2012JD018035.
    [20]
    Lu W, Chen L, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40(20):5531-5535, DOI: 10.1002/2013gl058060.
    [21]
    Lv W, Ma Ying, Zhang Yang, et al.Total-sky Lightning Event Observation System and Method.US Patent, No.8902312.Appl.No.13/980, 515.Appl.Date: 2012-03-15.Issue Date: 2014-12-02.
    [22]
    Wang D, Takagi N.Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan, IEEE Transactions on Power and Energy, 2012, 132(6):568-572, DOI: 10.1541/ieejpes.131.532.
    [23]
    Chen Luwen, Zhang Yijun, Lu Weitao, et al.Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes.J Atmos Ocean Technol, 2012, 29:1835-1844, DOI: 10.1175/JTECH-D-12-00028.1.
    [24]
    Rakov V A, Uman M A.Lightning:Physics and Effects.Cambridge:Cambridge University Press, 2003.
    [25]
    Mazur V.Physical processes during development of lightning flashes.Comptes Rendus Physique, 2002, 3(10):1393-1409, DOI: 10.1016/S1631-0705(02)01412-3.
    [26]
    Saba M F, Cummins K L, Warner T A, et al.Positive leader characteristics from high-speed video observations.Geophys Res Lett, 2008, 35(7):L07802, DOI: 10.1029/2007gl033000.
    [27]
    Campos L Z S, Saba M M F, Philip K E.On β2 stepped leaders in negative cloud-to-ground lightning.Journal of Geophysical Research Atmospheres, 2014, 119(11):6749-6767, DOI: 10.1002/2013JD021221.
    [28]
    Schumann C, Saba M M F, Warner T A, et al.Upward Flashes Triggering Mechanisms//International Symposium on Lightning Protection, 2017.
    [29]
    Williams E R, Mattos E V, Machado L A T.Stroke multiplicity and horizontal scale of negative charge regions in thunderclouds.Geophys Res Lett, 2016, 43(10), DOI: 10.1109/SIPDA.2017.8116941.
    [30]
    Schonland B F J.Progressive lightning Ⅳ.Proc R Soc, London, Ser A, 1938, 164:132-150. doi:  10.1098/rspa.1938.0009
    [31]
    谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170210&flag=1
    [32]
    刘恒毅, 董万胜, 张义军.云闪K过程的三维时空特征.应用气象学报, 2017, 28(6):62-75. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170606&flag=1
    [33]
    林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180311&flag=1
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (4042) PDF downloads(138) Cited by()
    • Received : 2018-10-18
    • Accepted : 2019-01-02
    • Published : 2019-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint