Liang Li, Lei Yong, Zhang Shuaichi, et al. Lightning location algorithm based on DBSCAN and grid search. J Appl Meteor Sci, 2019, 30(3): 267-278. DOI:  10.11898/1001-7313.20190302.
Citation: Liang Li, Lei Yong, Zhang Shuaichi, et al. Lightning location algorithm based on DBSCAN and grid search. J Appl Meteor Sci, 2019, 30(3): 267-278. DOI:  10.11898/1001-7313.20190302.

Lightning Location Algorithm Based on DBSCAN and Grid Search

DOI: 10.11898/1001-7313.20190302
  • Received Date: 2018-12-06
  • Rev Recd Date: 2019-03-14
  • Publish Date: 2019-05-31
  • Lightning location system can monitor the time and location of lightning in real time, supporting disaster early warning and post-disaster treatment in meteorology, power, aerospace, forest fire prevention and other fields. The location algorithm directly affects the accuracy of lightning detection results. Traditional location algorithms may often fall into the local optimum and needs a large amount of calculation. The practical application is limited by the computer capability and the anti-error interference ability is poor. A new lightning location algorithm DG-LLA (DBSCAN and Grid-Search Lighting Location Algorithm) is proposed. The algorithm is verified by a lightning accident example and regional simulation, and then by locating historical data detected in the national lightning monitoring network. The performance of the new algorithm is compared and further analyzed from three aspects:Lightning frequency temporal distribution, lightning spatial distribution and regional spatial distribution.Simulation results of lightning example show that the location error of TDOA (time difference of arrival) method is the largest, reaching 1314 m. Taylor series expansion method is a classical iterative algorithm with an error of 881 m. The error of proposed DG-LLA algorithm is significantly reduced to 84 m. Examples of artificial lightning initiation show that the new algorithm DG-LLA is more accurate than the national lightning monitoring network, and the average location error is 32.2% lower than operational network. Lightning location algorithm based on adaptive DBSCAN and grid-search optimization can effectively identify noise data and enhance the ability of anti-error interference. Regional simulation result shows that TDOA method and Taylor series expansion method have large positioning errors, with the RMSE (root mean square error) of 982 m and 668 m, respectively. When DBSCAN is added to location, the RMSE is significantly reduced to 406 m. After DBSCAN and grid search are added, the RMSE is further reduced to 349 m. Lightning location algorithm based on adaptive DBSCAN and grid search optimization improves the local searching ability and global searching ability of space and overcomes shortcomings of traditional iterative algorithm, such as easy divergence and local optimum of optimization algorithm, and solve the lightning strike point stably and accurately, and it performances better than operational network. The utilization rate of return data increases from 43.4% to 51.5%. The radar echo around new locations has stronger characteristics and higher locating accuracy. It provides a new method for lightning location.
  • Fig. 1  Flow of DG-LLA algorithm

    Fig. 2  Clustering results of lightning case

    Fig. 3  Comparison of location error distribution

    (a)TDOA method, (b)Taylor series expansion method, (c)DBSCAN, (d)DG-LLA

    Fig. 4  Root mean square error of lightning location and time standard deviation

    Fig. 5  Daily distribution of cloud-to-ground lightning on 1 Aug 2018

    (a)positive cloud-to-ground lightning, (b)negative cloud-to-ground lightning

    Fig. 6  Distribution of positive cloud-to-ground lightning on 1 Aug 2018

    (a)national lightning monitoring network, (b)DG-LLA

    Fig. 7  Distribution of negative cloud-to-ground lightning on 1 Aug 2018

    (a)national lightning monitoring network, (b)DG-LLA

    Fig. 8  Distribution of cloud-to-ground lightning in Hubei during 0900-1600 BT 1 Aug 2018

    Fig. 9  Cloud-to-ground lightning location results and radar combined reflectivity factor in Hubei on 1 Aug 2018

    Table  1  Comparison of location results of artificially triggered lightning return stroke

    闪电 到达时间/s 探测站大地坐标 国家雷电监测网 DG-LLA
    定位结果 误差/m 定位结果 误差/m
    1 0.0857547 23.183°N,114.288°E 23.640°N, 113.594°E 133.58 23.638°N, 113.596°E 66.79
    0.0858466 24.670°N,113.608°E
    0.0858582 23.630°N,112.435°E
    0.0859659 22.275°N,113.567°E
    2 0.6785874 23.630°N,112.435°E 23.637°N, 113.416°E 204.38 23.637°N, 113.563°E 156.69
    0.6785959 23.183°N,114.288°E
    0.6786434 24.670°N,113.608°E
    0.6787589 22.275°N,113.567°E
    0.6789672 24.423°N,111.508°E
    3 0.4382787 23.1833°N,114.2880°E 23.640°N,113.595°E 122.45 23.638°N, 113.596°E 89.06
    0.4383708 24.6704°N,113.6080°E
    0.4383826 23.6304°N,112.4349°E
    0.4384902 22.2750°N,113.5670°E
    DownLoad: Download CSV

    Table  2  Comparison of location under different number of stations

    探测站数量 国家雷电监测网 DG-LLA
    定位
    数量
    参与定位回击
    数据数量
    定位结果与探测站
    间的平均距离/km
    定位
    数量
    参与定位回
    击数据数量
    定位结果与探测站
    的平均距离/km
    3站 26604 79812 159.66 37610 112830 148.26
    4站 18594 74376 183.45 25275 101100 172.16
    4站以上 60042 306210 271.21 69018 414108 242.23
    DownLoad: Download CSV

    Table  3  Comparison of regional radar combination reflectivity factor in Hubei on 1 Aug 2018

    时间 区域范围 组合反射率因子
    平均值/dBZ
    定位结果次数
    国家雷电监测网 DG-LLA
    09:10 29°~30°N, 109°~110°E 19.8 4 8
    10:40 29°~30°N, 110°~111°E 20.6 1 10
    11:50 29°~30°N, 109°~110°E 15.2 7 16
    14:20 29°~30°N, 113°~114°E 42.7 12 45
    15:10 29°~30°N, 110°~111°E 26.5 6 23
    15:40 29°~30°N, 110°~111°E 32.3 4 18
    DownLoad: Download CSV
  • [1]
    李京校, 扈海波, 樊荣, 等.雷电监测预警对雷击风险评估的影响分析.气象科学, 2013, 33(6):678-684. http://d.old.wanfangdata.com.cn/Periodical/qxkx201306013
    [2]
    林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180311&flag=1
    [3]
    王洪涛, 王洪梅, 马启明.一种基于抗差估计的TDOA无线定位方法.科学技术与工程, 2008, 8(4):917-920. doi:  10.3969/j.issn.1671-1815.2008.04.013
    [4]
    赵文光, 陈家宏, 张勤, 等.新的雷电综合定位系统的定位计算.高电压技术, 1999, 25(4):66-68. doi:  10.3969/j.issn.1003-6520.1999.04.027
    [5]
    方姝, 倪育德, 刘逸, 等.基于最小二乘与Taylor级数展开的新型混合定位方法.计算机工程, 2015, 41(6):316-321. doi:  10.3969/j.issn.1000-3428.2015.06.057
    [6]
    杨俊峰, 张丕状.基于Chan算法和Taylor级数混合算法的到达时差定位.核电子学与探测技术, 2013, 33(4):480-482;526. doi:  10.3969/j.issn.0258-0934.2013.04.020
    [7]
    郭福成.基于多级网格搜索的固定单站无源定位方法.信号处理, 2008, 24(6):927-930. doi:  10.3969/j.issn.1003-0530.2008.06.009
    [8]
    胡志祥, 赵文光, 文银平, 等.雷电定位计算的粒子群优化方法.华中科技大学学报, 2011, 39(4):129-132. http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201104040.htm
    [9]
    郭小红, 赵雪松, 朱永利, 等.基于改进果蝇优化算法的雷电定位研究.电测与仪表, 2016, 53(16):5-10. doi:  10.3969/j.issn.1001-1390.2016.16.002
    [10]
    刘达新, 来志云, 吉平, 等.能抵抗粗差的雷电定位算法研究与仿真.科学技术与工程, 2013, 13(28):8399-8403. doi:  10.3969/j.issn.1671-1815.2013.28.031
    [11]
    李双庆, 慕升弟.一种改进的DBSCAN算法及其应用.计算机工程与应用, 2014, 50(8):72-76. doi:  10.3778/j.issn.1002-8331.1212-0093
    [12]
    钟丹星, 邓新蒲, 周一宇.一种基于WGS-84地球面模型的卫星测时差定位算法.宇航学报, 2003, 24(6):569-573. doi:  10.3321/j.issn:1000-1328.2003.06.005
    [13]
    曾辉, 曾芳玲, 杨景曙, 等.一种辅助纬度信息的空间三站时差定位算法.中国电子科学研究院学报, 2010, 5(3):243-247. doi:  10.3969/j.issn.1673-5692.2010.03.005
    [14]
    王丽娜, 许朴, 谢亚琴.基于WSRFCM聚类的局部离群点检测算法.微电子学与计算机, 2015(10):129-133. http://d.old.wanfangdata.com.cn/Periodical/wdzxyjsj201510027
    [15]
    钟丹星, 邓新蒲, 周一宇.一种基于WGS-84地球面模型的卫星测时差定位算法.宇航学报, 2003(6):569-573. doi:  10.3321/j.issn:1000-1328.2003.06.005
    [16]
    夏鲁宁, 荆继武.SA-DBSCAN:一种自适应基于密度聚类算法.中国科学院研究生院学报, 2009, 26(4):530-538. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb200904015
    [17]
    谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170210&flag=1
    [18]
    刘岩, 李征, 程向阳, 等.LD-2和ADTD型闪电定位资料的对比分析.南京信息工程大学学报(自然科学版), 2015, 7(4):380-384. http://www.cnki.com.cn/Article/CJFDTotal-NJXZ201504012.htm
    [19]
    赵伟, 姜瑜君, 童杭伟, 等.浙江省两套闪电定位系统地闪数据对比.应用气象学报, 2015, 26(3):354-363. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150311&flag=1
    [20]
    王丽娜, 莫月琴, 陶法, 等.气象常用表(第三号)可照时数订正.太阳能学报, 2018, 39(11):3014-3021. http://www.cqvip.com/QK/95586X/201811/6100003508.html
    [21]
    张志孝, 郑栋, 张义军, 等.闪电初始阶段和尺度判别方法及其特征.应用气象学报, 2017, 28(4):414-426. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170403&flag=1
    [22]
    刘恒毅, 董万胜, 张义军.云闪K过程的三维时空特征.应用气象学报, 2017, 28(6):700-713. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170606&flag=1
    [23]
    王婷波, 郑栋, 周康辉, 等.暴雨和雹暴个例中闪电特征对比.应用气象学报, 2017, 28(5):568-578. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170505&flag=1
    [24]
    姜睿娇, 董万胜, 刘恒毅, 等.雷暴中双极性窄脉冲事件的位置与辐射强度.应用气象学报, 2018, 29(2):177-187. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180205&flag=1
    [25]
    武斌, 张广庶, 文军, 等.闪电初始预击穿过程辐射脉冲特征及电流模型.应用气象学报, 2017, 28(5):555-567. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170504&flag=1
    [26]
    孟青, 樊鹏磊, 郑栋, 等.青藏高原那曲地区地闪与雷达参量关系.应用气象学报, 2018, 29(5):524-533. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180502&flag=1
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (4303) PDF downloads(108) Cited by()
    • Received : 2018-12-06
    • Accepted : 2019-03-14
    • Published : 2019-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint