Luan Tian, Guo Xueliang, Zhang Tianhang, et al. The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities. J Appl Meteor Sci, 2019, 30(3): 279-291. DOI:  10.11898/1001-7313.20190303.
Citation: Luan Tian, Guo Xueliang, Zhang Tianhang, et al. The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities. J Appl Meteor Sci, 2019, 30(3): 279-291. DOI:  10.11898/1001-7313.20190303.

The Scavenging Process and Physical Removing Mechanism of Pollutant Aerosols by Different Precipitation Intensities

DOI: 10.11898/1001-7313.20190303
  • Received Date: 2018-11-27
  • Rev Recd Date: 2019-03-18
  • Publish Date: 2019-05-31
  • The aerosol scavenging process of precipitation is an important mechanism for cleaning polluted aerosols in atmosphere. But there are many uncertainties due to complexities of precipitation processes and atmospheric pollutant particulate matter. PM2.5 scavenging rates by different intensities of precipitation are investigated based on aerosol and precipitation measurements in Beijing from March 2014 to July 2016. Effects of raindrop size distribution, wind speed and rain duration on PM2.5 scavenging rate are studied. Results show that stronger precipitation is more efficient in removing polluted aerosols in atmosphere. The mean PM2.5 scavenging rate is 5.1%, 38.5% and 50.6% for light, moderate and heavy rain, respectively. However, PM2.5 scavenging rate by light rain has large difference. In about 50% light rain cases, PM2.5 mass concentration decreases, while in the other 50% light rain cases, PM2.5 mass concentration increases. In all moderate and heavy rain cases, PM2.5 concentration apparently decreases. Scavenging rates exceed 40% for 10% of light rain cases, 50% of moderate rain cases, and 78% of heavy rain cases. Since light precipitation has generally narrower size distribution and more smaller drops, PM2.5 scavenging rate by light rain is much lower, while moderate and heavy rain usually have wider size distribution and more larger drops, so that PM2.5 scavenging rates by these precipitation are much higher. In addition, further investigations indicate that PM2.5 scavenging rate for light rain is strongly influenced by precipitation duration and wind speed. The longer precipitation duration and higher the wind speed is, the higher the scavenging rate for light rain becomes. In some light rain cases, these factors enhance scavenging rates, but influences of precipitation duration and wind speed on PM2.5 scavenging rates are relatively smaller for moderate and heavy rain. This is because that the moderate and heavy rain can scavenge most of PM2.5 in a short time. The size distribution of raindrops is not an important factor to cause the different PM2.5 scavenging rate for the same rain intensity.

  • Fig. 1  Relationship between PM2.5 mass concentration and hourly rainfall amount in Beijing from Mar 2014 to Jul 2016

    Fig. 2  Relationship between rain case numbers and PM2.5 scavenging rate for different rain intensities in Beijing from Mar 2014 to Jul 2016

    Fig. 3  Relationship between PM2.5 scavenging rate and hourly rainfall amount in rain events with PM2.5 mass concentration decreased after the rain in Beijing from Mar 2014 to Jul 2016

    (black lines in the box indicate median values, circles indicate average values, box boundaries indicate the first and third quartiles, lines above and under the box indicate the maximum and minimum values)

    Fig. 4  Mean raindrop size distributions of light, moderate and heavy rain events in Beijing

    Fig. 5  Mean raindrop size distributions for both cases with PM2.5 mass concentration decreased and increased of light and moderate rain events in Beijing

    Fig. 6  Variations of PM2.5 scavenging rate with rain duration in rain events with PM2.5 concentration decreased after the rain in Beijing from Mar 2014 to Jul 2016

    (black lines in the box indicate median values, circles indicate average values, box boundaries indicate the first and third quartiles, lines above and under the box indicate the maximum and minimum values, plus signs indicate the outlier)

    Fig. 7  Variations of PM2.5 scavenging rate with rain duration in rain events with PM2.5 mass concentration increased after the rain in Beijing from Mar 2014 to Jul 2016

    (black lines in the box indicate median values, circles indicate average values, box boundaries indicate the first and third quartiles, lines above and under the box indicate the maximum and minimum values, plus signs indicate the outlier, |ΔC| is the absolute value of PM2.5 scavenging rate)

    Fig. 8  Relationship between PM2.5 scavenging rate and the difference of wind speed in Beijing from Mar 2014 to Jul 2016

    (the wind speed during the rain minus that before the rain)

    Fig. 9  Temporal variations of PM2.5 mass concentration and hourly rainfall amount(a), wind speed and wind direction(b) of light rain event in Beijing during 25-26 Apr 2014

    Fig. 10  Temporal variations of PM2.5 mass concentration and hourly rainfall amount(a), wind speed and wind direction(b) of light rain event in Beijing on 12 Sep 2014

    Fig. 11  Temporal variations of PM2.5 mass concentration and hourly rainfall amount(a), wind speed and wind direction(b) of light rain event in Beijing during 17-18 Sep 2015

    Table  1  PM2.5 scavenging rates for different rain intensities in Beijing from Mar 2014 to Jul 2016

    类别 降水强度 个例数量 PM2.5清除率/%
    平均值 最大值 最小值
    小雨 48 23.4 78.8 0.4
    PM2.5质量浓度减小个例 中雨 12 46.0 83.9 5.6
    大雨 9 50.6 70.9 10.5
    PM2.5质量浓度增加个例 小雨 46 -14.0 -0.2 -50.9
    中雨 2 -6.7 -2.9 -10.4
    小雨 94 5.1 78.8 -50.9
    总个例 中雨 14 38.5 83.9 -10.4
    大雨 9 50.6 70.9 10.5
    DownLoad: Download CSV
  • [1]
    Seinfeld J H, Pandis S N.Atmospheric Chemistry And Physics:From Air Pollution To Climate Change.Hoboken, NJ:Wiley & Sons, 2006.
    [2]
    Andronache C, Gronholm T, Laakso L, et al.Scavenging of ultrafine particles by rainfall at a boreal site:Observations and model estimations.Atmos Chem Phys, 2006, 6:4739-4754. doi:  10.5194/acp-6-4739-2006
    [3]
    Zhang L M, Michelangeli D V, Taylor P A.Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation.Atmos Environ, 2004, 38(28):4653-4665. doi:  10.1016/j.atmosenv.2004.05.042
    [4]
    Zhang L M, Michelangeli D V, Taylor P A.Influence of aerosol concentration on precipitation formation in low-level, warm stratiform clouds.J Aerosol Sci, 2006, 37(2):203-217. doi:  10.1016/j.jaerosci.2005.04.002
    [5]
    Andronache C.Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions.Atmos Chem Phys, 2003, 3:131-143. doi:  10.5194/acp-3-131-2003
    [6]
    Zhang L M, Wang X, Moran M D, et al.Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmos Chem Phys, 2013, 13:10005-10025. doi:  10.5194/acp-13-10005-2013
    [7]
    Zhao S P, Yu Y, He J J, et al.Below-cloud scavenging of aerosol particles by precipitation in a typical valley city, northwestern China.Atmos Environ, 2015, 102:70-78. doi:  10.1016/j.atmosenv.2014.11.051
    [8]
    Chate D M, Murugavel P, Ali K, et al.Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models.Atmos Res, 2011, 99(3-4):528-536. doi:  10.1016/j.atmosres.2010.12.010
    [9]
    Bae S Y, Jung C H, Kim Y P.Development and evaluation of an expression for polydisperse particle scavenging coefficient for the below-cloud scavenging as a function of rain intensity using the moment method.J Aerosol Sci, 2006, 37(11):1507-1519. doi:  10.1016/j.jaerosci.2006.02.003
    [10]
    蒲维维, 张小玲, 徐敬, 等.北京地区酸雨特征及影响因素.应用气象学报, 2010, 21(4):464-472. doi:  10.3969/j.issn.1001-7313.2010.04.010
    [11]
    Andronache C.Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer.J Geophys Res, 2004, 109:D16. https://www.researchgate.net/publication/259300820_Precipitation_removal_of_ultrafine_aerosol_particles_from_the_atmospheric_boundary_layer
    [12]
    Chate D M, Pranesha T S.Field studies of scavenging of aerosols by rain events.J Aerosol Sci, 2004, 35(6):695-706. doi:  10.1016/j.jaerosci.2003.09.007
    [13]
    Davenport H M, Peters L K.Field studies of atmospheric particulate concentration changes during precipitation.Atmos Environ, 1978, 12(5):997-1008. doi:  10.1016/0004-6981(78)90344-X
    [14]
    Croft B, Lohmann U, Martin R V, et al.Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM.Atmos Chem Phys, 2009, 9:4653-4675. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_9286f10ac180093319de5af82f13646d
    [15]
    Laakso L, Grönholm T, Rannik V, et al.Ultrafine particle scavenging coefficients calculated from 6 years field measurements.Atmos Environ, 2003, 37(25):3605-3613. doi:  10.1016/S1352-2310(03)00326-1
    [16]
    Olszowski T.Changes in PM10 concentration due to large-scale rainfall.Arab J Geosci, 2016, 9(2):160. doi:  10.1007/s12517-015-2163-2
    [17]
    Lai K-Y, Dayan N, Kerker M.Scavenging of aerosol particles by a falling water drop.J Atmos Sci, 1978, 35(4):674-682. doi:  10.1175/1520-0469(1978)035<0674:SOAPBA>2.0.CO;2
    [18]
    Wang X, Zhang L, Moran M D.Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain.Atmos Chem Phys, 2010, 10:5685-5705. doi:  10.5194/acp-10-5685-2010
    [19]
    Wang X, Zhang L, Moran M D.On the discrepancies between theoretical and measured below-cloud particle scavenging coefficients for rain-a numerical investigation using a detailed one-dimensional cloud microphysics model.Atmos Chem Phys, 2011, 11:11859-11866. doi:  10.5194/acp-11-11859-2011
    [20]
    Ardon-Dryer K, Huang Y W, Cziczo D J.Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis.Atmos Chem Phys, 2015, 15:9159-9171. doi:  10.5194/acp-15-9159-2015
    [21]
    Ladino L, Stetzer O, Hattendorf B, et al.Experimental study of collection efficiencies between submicron aerosols and cloud droplets.J Atmos Sci, 2011, 68(9):1853-1864. doi:  10.1175/JAS-D-11-012.1
    [22]
    Lemaitre P, Querel A, Monier M, et al.Experimental evidence of the rear capture of aerosol particles by raindrops.Atmos Chem Phys, 2017, 17:4159-4176. doi:  10.5194/acp-17-4159-2017
    [23]
    Greenfield S M.Rain scavenging of radioactive particulate matter from the atmosphere.J Meteorol, 1957, 14(2):115-125. doi:  10.1175/1520-0469(1957)014<0115:RSORPM>2.0.CO;2
    [24]
    Tinsley B A.Electric charge modulation of aerosol scavenging in clouds:Rate coefficients with Monte Carlo simulation of diffusion.J Geophys Res, 2010, 115:D23211. doi:  10.1029/2010JD014580
    [25]
    Tinsley B A, Zhou L M, Plemmons A.Changes in scavenging of particles by droplets due to weak electrification in clouds.Atmos Res, 2006, 79(3-4):266-295. doi:  10.1016/j.atmosres.2005.06.004
    [26]
    Maria S F, Russell L M.Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation.Environ Sci Technol, 2005, 39(13):4793-4800. doi:  10.1021/es0491679
    [27]
    Zikova N, Zdimal V.Precipitation scavenging of aerosol particles at a rural site in the Czech Republic.Tellus B, 2016, 68(1):27343. doi:  10.3402/tellusb.v68.27343
    [28]
    徐小斌.我国霾和光化学污染观测研究进展.应用气象学报, 2016, 27(5):604-619. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160509&flag=1
    [29]
    靳军莉, 颜鹏, 马志强, 等.北京及周边地区2013年1-3月PM2.5变化特征.应用气象学报, 2014, 25(6):690-700. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140605&flag=1
    [30]
    颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi:  10.3969/j.issn.1001-7313.2010.03.001
    [31]
    姜江, 张国平, 高金兵.北京大气能见度的主要影响因子.应用气象学报, 2018, 29(2):188-199. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180206&flag=1
    [32]
    马肖琳, 高西宁, 刘煜, 等.气溶胶对东亚冬季风影响的数值模拟.应用气象学报, 2018, 29(3):333-343. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180307&flag=1
    [33]
    Chen R J, Zhao Z H, Kan H D.Heavy Smog and Hospital Visits in Beijing, China.Am J Resp Crit Care, 2013, 188(9):1170-1171. doi:  10.1164/rccm.201304-0678LE
    [34]
    Feng X, Wang S.Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China.J Environ Sci-China, 2012, 24(4):665-674. doi:  10.1016/S1001-0742(11)60807-3
    [35]
    Guo L C, Zhang Y, Lin H, et al.The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.Environ Pollut, 2016, 215:195-202. doi:  10.1016/j.envpol.2016.05.003
    [36]
    姚克亚, 郭俊, 傅云飞, 等.气溶胶粒子的降雨清除.气候与环境研究, 1999, 4(3):297-302. doi:  10.3878/j.issn.1006-9585.1999.03.11
    [37]
    Luan T, Guo X, Guo L, et al.Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing.Atmos Chem Phys, 2018, 18(1):203-225. doi:  10.5194/acp-18-203-2018
    [38]
    Brawn D, Upton G.On the measurement of atmospheric gamma drop-size distributions.Atmos Sci Lett, 2008, 9(4):245-247. doi:  10.1002/asl.v9:4
    [39]
    Chen B J, Wang J, Gong D L.Raindrop size distribution in a midlatitude continental squall line measured by thies optical disdrometers over East China.J Appl Meteorol Climatol, 2016, 55(3):621-634. doi:  10.1175/JAMC-D-15-0127.1
    [40]
    Chen B J, Yang J, Pu J P.Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China.J Meteorol Soc Jpn, 2013, 91(2):215-227. doi:  10.2151/jmsj.2013-208
    [41]
    American Meteorological Society, cited 2019: "Rain".Glossary of Meteorology.Available online at http://glossary.ametsoc.org/wiki/Rain.
    [42]
    蒲维维, 赵秀娟, 张小玲.北京地区夏末秋初气象要素对PM2.5污染的影响.应用气象学报, 2011, 22(6):716-723. doi:  10.3969/j.issn.1001-7313.2011.06.009
    [43]
    潘玮, 左志燕, 肖栋, 等.近50年中国霾年代际特征及气象成因.应用气象学报, 2017, 28(3):257-269. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170301&flag=1
    [44]
    Wang Y, Wan Q, Meng W, et al.Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China.Atmos Chem Phys, 2011, 11(23):12421-12436. doi:  10.5194/acp-11-12421-2011
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (6155) PDF downloads(289) Cited by()
    • Received : 2018-11-27
    • Accepted : 2019-03-18
    • Published : 2019-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint