Ren Suling, Fang Xiang, Lu Naimeng, et al. Recognition method of the Tibetan Plateau vortex based on meteorological satellite data. J Appl Meteor Sci, 2019, 30(3): 345-359. DOI:  10.11898/1001-7313.20190308.
Citation: Ren Suling, Fang Xiang, Lu Naimeng, et al. Recognition method of the Tibetan Plateau vortex based on meteorological satellite data. J Appl Meteor Sci, 2019, 30(3): 345-359. DOI:  10.11898/1001-7313.20190308.

Recognition Method of the Tibetan Plateau Vortex Based on Meteorological Satellite Data

DOI: 10.11898/1001-7313.20190308
  • Received Date: 2018-11-08
  • Rev Recd Date: 2019-01-28
  • Publish Date: 2019-05-31
  • Based on long-term meteorological satellite data and multi-source observation and reanalysis datasets, the recognition method of the Tibetan Plateau vortex is studied. Based on the method, the Plateau weather analysis software is developed and the vortex dataset of almost 30 years is established. The location, track and distribution of low vortexes based on yearbooks and satellite are compared and the origin region, track and seasonal distribution of low vortexes are studied. Results show that the height and wind fields over the Tibetan Plateau of NCEP/NCAR reanalysis dataset are the most consistent with sounding data which can be used to identify the Tibetan Plateau vortex. Climate vortexes from satellite show there are two vortex activity centers located in the east and the west of the Plateau, respectively. In the eastern part of the Plateau with several sounding stations, high value vortex activity centers are coincided with which from yearbooks(east of 90°E).In winter, the frequency of vortex activity from satellite data is obviously higher than that from yearbooks caused by the activity of vortex in the western part of the Plateau. The analysis of annual vortex tracks also show that vortexes from the satellite recognition are in good agreement with that from yearbooks except for the central, western and southern parts of the Plateau without sounding stations, which indicates that vortex data from the satellite recognition is feasible in the eastern part of the Plateau. After three new sounding stations are built in the central and western part of the Plateau in 2015, vortexes in yearbook show there are several vortexes to the west of 90°E near new stations which account for about 22% of the total number in 2015. The distribution of vortex from satellite and yearbook is accordant near three new stations which indicates the credibility of vortex data from the satellite recognition in the central and western part of the Plateau. Therefore, vortexes from satellite recognition are consistent with vortexes from yearbooks when there are sounding stations and it also can be used to track the origin of the vortex. At the same time, it also can identify vortexes occurring in western part of the Plateau, especially in winter. It is an effective supplement to the low vortex yearbook datasets.
  • Fig. 1  The distribution of meteorological sounding stations over the Tibet Plateau

    (the shaded denotes terrain height no less than 3000 m)

    Fig. 2  The average geo-potential height at 200 hPa and 500 hPa of meteorological sounding stations(Dingri, Lasa, Naqu, Linzhi, Changdu) and NCEP/NCAR, JRA-55 and ERA-Interim reanalysis from 2007 to 2016

    Fig. 3  The average wind speed at 200 hPa and 500 hPa of meteorological sounding stations(Dingri, Lasa, Naqu, Linzhi, Changdu) and NCEP/NCAR, JRA-55 and ERA-Interim reanalysis from 2007 to 2016

    Fig. 4  The vertical distribution of horizontal wind at Dingri, Lasa, Naqu, Linzhi, Changdu from 1 Jun to 1 Jul during 2007-2016 (a) and that of Naqu from 1 Jun to 1 Jul in 2008(b) based on observation and NCEP/NCAR, JRA-55, ERA-Interim reanalysis

    Fig. 5  The daily mean vortex activity frequency of the Tibetan Plateau based on Yearbooks(a) and meteorological satellite(b) with monthly mean of the Tibet Plateau vortex genesis(c) from 2001 to 2014

    Fig. 6  The distribution of the Tibet Plateau vortex activity frequency based on Yearbooks(a) and meteorological satellite(b) from 2001 to 2014

    (black dot denotes meteorological sounding station)

    Fig. 7  The monthly mean distribution of the Tibet Plateau vortex activity frequency based on meteorological satellite from 2001 to 2014

    Fig. 8  The Tibet Plateau vortex tracks based on Yearbooks(a) and meteorological satellite(b) in 2008

    (blue curve denotes 3000 m topographic height)

    Fig. 9  The Tibet Plateau vortex tracks from the recognition based on meteorological satellite(solid line denotes No.15) and Yearbooks (dash line denotes No.7 and No.8) in 2008

    Fig. 10  The Tibet Plateau vortex tracks of No.15 based on meteorological satellite(solid line), vortex positions based on Yearbook(black dot denotes No.15, black square denotes No.7 and 8), satellite water vapour images(the shaded), geo-potential height at 500 hPa(white contour, unit:dagpm) and sounding wind bar at 0000 UTC 11 May, 1200 UTC 11 May, 1200 UTC 12 May, 1200 UTC 13 May in 2008

    Fig. 11  The Tibet Plateau vortex tracks based on Yearbooks(a) and meteorological satellite(b) in 2015

    (blue curve denotes 3000 m topographic height, black square denotes Shiquanhe, Gaize and Shenzha meteorological sounding station)

    Table  1  Consistency analysis of the Tibet Plateau vortexes between the recognition based on meteorological satellite and Yearbook in 2008

    气象卫星识别低涡编号 年鉴低涡编号 说明
    1 西部低涡
    2 西部低涡
    3 西部低涡
    4 1 一致
    5 弱低涡
    6 2 一致
    7 弱低涡
    8 西北部低涡
    9 3 一致
    10 4 一致
    11 西部低涡
    12 5 一致
    13 南部低涡
    14 6 一致
    15 7和8 一致
    16
    17 9, 10和11 一致
    18 12和13 一致
    19 14 一致
    20 西部低涡
    21
    22 西部低涡
    23 15和16 一致
    24 17和18 一致
    25 19和20 一致
    26 21 一致
    27 22 一致
    28 23 一致
    29 24 一致
    30 25 一致
    31 26 一致
    32 29 一致
    33
    34 30 一致
    35 31 一致
    36 33和34 一致
    37
    38
    39
    40 36 一致
    41 39 一致
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51 西部低涡
    DownLoad: Download CSV
  • [1]
    叶笃正, 高由禧.青藏高原气象学.北京:科学出版社, 1979.
    [2]
    罗四维, 何梅兰, 刘晓东.关于夏季青藏高原低涡的研究.中国科学(B辑), 1993, 23(7):778-784. http://cdmd.cnki.com.cn/Article/CDMD-80058-2006044909.htm
    [3]
    李国平.青藏高原动力气象学.北京:气象出版社, 2007.
    [4]
    李跃清.第三次青藏高原大气科学试验的观测基础.高原山地气象研究.2011, 31(3):77-82. doi:  10.3969/j.issn.1674-2184.2011.03.016
    [5]
    徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2006, 17(6):756-772. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606124&flag=1
    [6]
    王鑫, 李跃清, 郁淑华, 等.青藏高原低涡活动的统计研究.高原气象, 2009, 28(1):64-71. http://d.old.wanfangdata.com.cn/Periodical/gyqx200901008
    [7]
    陈乾.青藏高原地区500 hPa低涡的天气气候分析//兰州天动会议技术材料.西宁:青海人民出版社, 1964:27-29.
    [8]
    吴永森.高原夏季500 hPa低涡的初步研究//青海省气象论文集(二), 1964: 18-19.
    [9]
    刘富明, 伏梅娟.东移的青藏高原低涡的研究.高原气象, 1985:5(2):125-134. http://d.old.wanfangdata.com.cn/Thesis/Y2037572
    [10]
    高文良, 郁淑华.高原低涡东移出高原的平均环流场分析.高原气象, 2007, 26(1):206-212. doi:  10.3321/j.issn:1000-0534.2007.01.024
    [11]
    郁淑华, 高文良.高原低涡移出高原的观测事实分析.气象学报, 2006, 64(3):392-399. doi:  10.3321/j.issn:0577-6619.2006.03.014
    [12]
    郁淑华, 高文良, 顾清源.近年来影响我国东部洪涝的高原东移涡环流场特征分析.高原气象, 2007:26(3):466-475. doi:  10.3321/j.issn:1000-0534.2007.03.005
    [13]
    郁淑华, 肖玉华, 高文良.冷空气对高原低涡移出青藏高原的影响.应用气象学报, 2007, 18(6):737-747. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200706113&flag=1
    [14]
    郁淑华, 高文良, 肖玉华.冷空气对两例高原低涡移出高原影响的分析.高原气象, 2008, 27(1):96-103. http://d.old.wanfangdata.com.cn/Periodical/gyqx200801011
    [15]
    郁淑华, 高文良, 彭骏.青藏高原低涡活动对降水影响的统计分析.高原气象, 2012, 31(3):295-304. http://d.old.wanfangdata.com.cn/Periodical/gyqx201203002
    [16]
    齐鹏程, 郑栋, 张义军, 等.青藏高原闪电和降水气候特征及时空对应关系.应用气象学报, 2016, 27(4):488-497. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160412&flag=1
    [17]
    孟青, 樊鹏磊, 郑栋, 等.青藏高原那曲地区地闪与雷达参量关系.应用气象学报, 2018, 29(5):524-533. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180502&flag=1
    [18]
    赵平, 袁溢.2014年7月14日高原低涡降水过程观测分析.应用气象学报, 2017, 28(5):532-543. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170502&flag=1
    [19]
    李国平, 卢会国, 黄楚惠, 等.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响.大气科学, 2016:40(1):131-141. http://d.old.wanfangdata.com.cn/Periodical/daqikx201601011
    [20]
    Zhang Pengfei, Li Guoping, Fu Xiouhua, et al.Clustering of Tibetan Plateau vortices by 10-30-day intraseasonal oscillation.Mon Wea Rev, 2014, 142:290-300. doi:  10.1175/MWR-D-13-00137.1
    [21]
    钱正安等(青藏高原气象科学研究拉萨会战组).夏半年500 hPa青藏高原低涡切变线的研究.北京: 科学出版社, 1981.
    [22]
    许健民, 郑新江, 徐欢, 等.GMS-5水汽图像所揭示的青藏高原地区对流层上部水汽分布特征.应用气象学报, 1996, 7(2):246-251. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960236&flag=1
    [23]
    江吉喜, 项续康.青藏高原夏季中尺度强对流系统的时空分布.应用气象学报, 1996, 7(4):473-478. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960472&flag=1
    [24]
    徐祥德, 陶诗言, 王继志, 等.青藏高原-季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系.气象学报, 2002, 60(3):257-266. http://www.cnki.com.cn/Article/CJFDTotal-QXXB200203000.htm
    [25]
    林志强, 周振波, 假拉.高原低涡客观识别方法及其初步应用.高原气象, 2013:32(6):1580-1588. http://d.old.wanfangdata.com.cn/Conference/8145495
    [26]
    Yuichiro O, Hirohiko I.Estimation of land surface temperature over the Tibetan Plateau using GMS data.J Appl Meteor, 2004, 43:548-561. doi:  10.1175/1520-0450(2004)043<0548:EOLSTO>2.0.CO;2
    [27]
    杨军.气象卫星及其应用.北京:气象出版社, 2012.
    [28]
    Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year re-analysis project.Bull Amer Meteor Soc, 1996, 7:437-471. https://www.researchgate.net/publication/203931920_The_NMCNCAR_40-year_reanalysis_project_Bull_Am_Meteorol_Soc
    [29]
    Kobayashi C, Iwasaki T.Brewer-Dobson circulation diagnosed from JRA-55.J Geophys Res Atmos, 2016, 121, DOI: 10.1002/2015JD023476.
    [30]
    Owerns R G, Hewson T D.ECMWF Forecast User Guide.Reading:ECMWF, 2018, DOI: 10.21957/mIcs7h.
    [31]
    李跃清, 郁淑华, 彭骏.青藏高原低涡切变线年鉴.北京:科学出版社, 2016.
    [32]
    Zhao Ping, Xu Xiangde, Chen Fei, et al.The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects.Bull Amer Meteor Soc, 2018, 99:757-776. doi:  10.1175/BAMS-D-16-0050.1
    [33]
    除多, 洛桑曲珍, 杨志刚, 等.1981-2010年青藏高原降雪日数时空变化特征.应用气象学报, 2017, 28(3):292-305. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170304&flag=1
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (2800) PDF downloads(191) Cited by()
    • Received : 2018-11-08
    • Accepted : 2019-01-28
    • Published : 2019-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint