Yan Hongming, Wang Ling. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. DOI:  10.11898/1001-7313.20190309.
Citation: Yan Hongming, Wang Ling. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. DOI:  10.11898/1001-7313.20190309.

The Relationship Between East-west Movement of Subtropical High over Northwestern Pacific and Precipitation in Southwestern China

DOI: 10.11898/1001-7313.20190309
  • Received Date: 2019-01-02
  • Rev Recd Date: 2019-03-14
  • Publish Date: 2019-05-31
  • The Northwest Pacific subtropical high (abbreviated as subtropical high) is one of the large-scale circulation systems that affect the climate in East Asia. The seasonal north-south movement of the subtropical high has a very important effect on the position of summer rain belt in eastern China. Most of the related researches focus on the movement of the subtropical high in the north-south direction, while less attention is paid to the east-west displacement, especially the influence on the climate in Southwest China. Southwest China is located in the eastward part of the Qinghai-Xizang Plateau, with high altitude and low latitude. Though the influence of the subtropical high on the climate in Southwest China is not as direct as that in the eastern part of China, it is found that the change of subtropical high also plays a very important role by affecting the configuration of atmospheric circulation system. Therefore, it is of great significance to study the anomalous movement of the east-west position of the subtropical high and its influence on the climate in southwestern China in order to understand causes of the climate anomaly.To further understand the influence of the change of the subtropical high, a new index to measure the east-west position of the summer subtropical high is defined by the regionally averaged relative vorticity at 700 hPa in different regions based on the climatology circulation. Results show that the index can characterize the east-west displacement of the anticyclonic circulation of the subtropical high more objectively and qualitatively, and it can also reflect the linkage between the subtropical high and meridional circulation over East Asia. When the subtropical high is east (west), there is a negative-positive-negative (positive-negative-positive) meridional anomalous wave train over East Asia. Comparing with other indices, the new index can better reflect the seasonal movement of rain belt position in eastern China in summer and has a significant correlation with precipitation in Southwest China in June and July. When the subtropical high is west, there is less precipitation in western and southern Sichuan, and most in Guizhou in June, and there is more precipitation in northern and eastern Sichuan, northeast Guizhou, and less precipitation in central and northwest Yunnan in July. When the subtropical high is east, the precipitation distribution is almost the contrary. Further analysis also shows that the relationship between the subtropical high and SST is related to the active position of the subtropical high. The farther north the subtropical high is, the weaker the relationship between the subtropical high and the SST is.
  • Fig. 1  Climatological characteristic lines(the blue solid line, unit:gpm), ridge lines(the red long dashed line), relative vorticity(the shaded) and vector winds(the vector) at 500 hPa and 700 hPa in Jun, Jul, Aug and summer (the rectangular box denotes the location of key area)

    Fig. 2  Interannual variation of VORT standardized subtropical high index in Jun, Jul, Aug and summer from 1958 to 2014

    Fig. 3  The difference distribution of 500 hPa height(unit:gpm) and 700 hPa vorticity(unit:10-6s-1) between positive and negative VORT years in Jun, Jul and Aug

    (light to dark shaded areas denote passing the test of 0.05, 0.02 and 0.01 levels)

    Fig. 4  The correlation distribution between VORT index and vector wind at 850 hPa and 200 hPa level in Jun, Jul and Aug during 1958-2014

    (vectors denote passing the test of 0.05 level)

    Fig. 5  The interannual variation of NCC index, WIND index and VORT index in Jun, Jul and Aug from 1958 to 2014

    Fig. 6  The distribution of relative vorticity(the shaded), ridge line(the red long dashed line), 5880 gpm characteristic line (the blue dotted line, unit:gpm), climatological 5880 gpm line(the blue solid line, unit:gpm), vector winds and exceeding 10 mm precipitation region(the green line, unit:mm) in evidently different years

    (a)Jun 1992, (b)Jun 1998, (c)Jul 1984, (d)Jul 1989, (e)Aug 1981, (f)Aug 1986

    Fig. 7  5880 gpm isogram according to IVORT>1.0(the short dotted line)and 0.5>IVORT>0 (the long dashed line)in Jun, Jul and Aug(the solid line denotes 5880 gpm)

    Fig. 8  Correlation distributions between different index and precipitation in China during 1961-2014

    (the shaded denotes passing the test of 0.05 level)

    Fig. 9  Correlation distributions between different index and precipitation in Southwestern China for 1961-2014

    (the shaded denotes passing the test of 0.1 level)

    Fig. 10  Correlation between VORT index and SST field in Jun and Jul

    (the shaded denotes passing the test of 0.05 level)

    Table  1  The relationship between three indices in Jun Jul and Aug

    指数 6月 7月 8月
    NCC WIND VORT NCC WIND VORT NCC WIND VORT
    NCC 1 0.14 0.31 1 0.19 0.30 1 0.39 0.41
    WIND 1 0.43 1 0.51 1 0.43
    VORT 1 1 1
      注:相关系数超过0.26均达到0.05显著性水平。
    DownLoad: Download CSV
  • [1]
    谭桂容, 范艺媛, 牛若芸.江淮地区强降水分型及其环流演变.应用气象学报, 2018, 78(4):396-409. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180402&flag=1
    [2]
    王月, 张强, 顾西辉, 等.淮河流域夏季降水异常与若干气候因子的关系.应用气象学报, 2016, 76(1):67-74. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160107&flag=1
    [3]
    薛秋芳, 任传森, 陶诗言.长江流域洪涝灾害的成因分析.应用气象学报, 2001, 12(2):246-250. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010233&flag=1
    [4]
    牛若芸, 张志刚, 金荣花.2010年我国南方两次持续性强降水的环流特征.应用气象学报, 2012, 23(4):385-394. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120401&flag=1
    [5]
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 1992.
    [6]
    陶诗言, 卫捷.再论夏季西太平洋副热带高压的西伸北跳.应用气象学报, 2006, 17(5):513-525. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060591&flag=1
    [7]
    张庆云, 陶诗言.夏季西太平洋副热带高压异常时的东亚大气环流特征.大气科学, 2003, 27(3):269-380. http://d.old.wanfangdata.com.cn/Periodical/daqikx200303007
    [8]
    姚秀萍, 于玉斌, 刘还珠.2003年淮河流域异常降水期间副热带高压的特征.热带气象学报, 2005, 21(4):393-400. doi:  10.3969/j.issn.1004-4965.2005.04.007
    [9]
    金啟华, 王辉, 姜华, 等.北太平洋副热带海洋环流强度异常对长江中下游夏季降水的影响.海洋学报, 2012, 34(1):64-70. http://d.old.wanfangdata.com.cn/Periodical/hyxb201201008
    [10]
    李慧, 周顺武, 王亚非.西太平洋副热带高压异常与中国长江中下游夏季降水关系研究综述.气象与环境学报, 2013, 29(1):93-102. doi:  10.3969/j.issn.1673-503X.2013.01.016
    [11]
    翟盘茂, 李蕾, 周佰铨, 等.江淮流域持续性极端降水及预报方法研究进展.应用气象学报, 2016, 76(5):631-640. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160511&flag=1
    [12]
    张庆云, 陶诗言.夏季西太平洋副热带高压北跳及异常的研究.气象学报, 1999, 57(5):539-548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900533752
    [13]
    李建平, 朱建磊.晚春初夏西太平洋副热带高压南撤过程的气候学特征.气象学报, 2008, 66(6):926-939. doi:  10.3321/j.issn:0577-6619.2008.06.008
    [14]
    韦道明, 李崇银, 谭言科.夏季西太平洋副热带高压南北位置变动特征及其影.气候与环境研究, 2011, 16(3):255-272. doi:  10.3878/j.issn.1006-9585.2011.03.01
    [15]
    晏红明, 程建刚, 郑建盟, 等.2009年云南秋季特大干旱的气候成因分析.大气科学学报, 2012, 35(2):229-239. doi:  10.3969/j.issn.1674-7097.2012.02.011
    [16]
    晏红明, 王灵, 朱勇, 等.2008年初云南低温雨雪冰冻天气的气候成因分析.高原气象, 2009, 28(4):870-879. http://d.old.wanfangdata.com.cn/Periodical/gyqx200904020
    [17]
    刘芸芸, 李维京, 艾孑兑秀, 等.月尺度西太平洋副热带高压指数的重建与应用.应用气象学报, 2012, 23(4):414-423. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120404&flag=1
    [18]
    Lu R.Indices of the summertime western North Pacific subtropical high.Adv Atmos Sci, 2002, 19:1004-1028. doi:  10.1007/s00376-002-0061-5
    [19]
    Yang H, Sun S.Longtitudinal displacement of the subtropical high in the western Pacific in summer and its influence.Adv Atmos Sci, 2003, 20:921-933. doi:  10.1007/BF02915515
    [20]
    Yang H, Sun S.The characteristics of the subtropical high in the western Pacific in pre-rainy season in South China.Adv Atmos Sci, 2005, 22:392-400. doi:  10.1007/BF02918752
    [21]
    王黎娟, 罗玲, 张兴强, 等.西太平洋副热带高压东西位置变动特征分析.南京气象学院学报, 2005, 28(5):577-585. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb200505001
    [22]
    陆日宇, 李颖, Chan-Su Ryu.夏季西太平洋副热带高压的东西偏移和对流层低层环流变化的主要模态的关系.自然科学进展, 2007, 17(4):546-550. doi:  10.3321/j.issn:1002-008X.2007.04.019
    [23]
    Yang R W, Xie Z A, Cao J.A dynamic index for the westward ridge point variability of the western Pacific subtropical high during summer.J Climate, 2017, 30:3325-3341. doi:  10.1175/JCLI-D-16-0434.1
    [24]
    Xie P, Arkin P A.Global precipitation:A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs.Bull Amer Meteor Soc, 1997, 78:2539-2558. doi:  10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
    [25]
    Kalnay E, Kanamitsu M, Kistler R.The NCEP/NCAR 40-year reanalysis project, Bull Amer Meteor Soc, 1996, 77:437-470. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [26]
    Rayner N A, Parker D E, Horton E B, et al.Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century.Journal of Geophysical Research Atmospheres, 2003, 108(D14):4407, DOI: 10.1029/2002JD002670.
    [27]
    Liu Y M, Wu G X, Liu H, et al.Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere.Climate Dyn, 2001, 17(4):327-338. doi:  10.1007/s003820000117
    [28]
    Rodwell M J, Hoskins B J.Subtropical anticyclones and summer monsoons.J Climate, 2000, 14:3192-3211. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231802743/
    [29]
    陈志举.散度、涡度与天气.甘肃气象, 1985(4):16. http://d.old.wanfangdata.com.cn/Thesis/Y398979
    [30]
    赵俊虎, 封国林, 杨杰, 等.夏季西太平洋副热带高压的不同类型与中国汛期大尺度旱涝的分布.气象学报, 2012, 70(5):1021-1031. http://d.old.wanfangdata.com.cn/Periodical/qxxb201205009
    [31]
    李万彪, 周春平.热带西太平洋暖池和副热带高压之间的关系.气象学报, 1998, 56(5):619-626. doi:  10.3321/j.issn:0577-6619.1998.05.011
    [32]
    陈迪, 高山红, 陈锦年, 等.赤道东太平洋和印度洋-南海暖池海温场的协同作用对西太平洋副热带高压的影响.海洋学报, 2016, 38(2):1-15. doi:  10.3969/j.issn.0253-4193.2016.02.001
    [33]
    陈丽娟, 袁媛, 杨明珠, 等.海温异常对东亚夏季风影响机理的研究进展.应用气象学报, 2013, 24(5):521-532. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130502&flag=1
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(1)

    Article views (3230) PDF downloads(196) Cited by()
    • Received : 2019-01-02
    • Accepted : 2019-03-14
    • Published : 2019-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint