Zhu Congwen, Liu Boqi, Zuo Zhiyan, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. DOI:  10.11898/1001-7313.20190402.
Citation: Zhu Congwen, Liu Boqi, Zuo Zhiyan, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. DOI:  10.11898/1001-7313.20190402.

Recent Advances on Sub-seasonal Variability of East Asian Summer Monsoon

DOI: 10.11898/1001-7313.20190402
  • Received Date: 2019-02-18
  • Rev Recd Date: 2019-04-26
  • Publish Date: 2019-07-31
  • The sub-seasonal (10-90 days) variability of East Asian summer monsoon (EASM) is crucial for extreme climate disasters (e.g., persistent heavy rainfall and heat waves) in China, which is a blind spot between the upper weather forecast and the seasonal prediction. Recent advances of EASM on sub-seasonal timescale are reported, including features of EASM sub-seasonal variation, influences of mid-latitudinal Eurasian soil moisture and snow cover, as well as the tropical air-sea interaction. Results show the potential predictability of EASM sub-seasonal variability depends on the phase-locking between the sub-seasonal variability and seasonal cycle of EASM. The sub-seasonal variation of EASM is the intrinsic physical mode, which is different from the Madden-Julian Oscillation. It is featured by the intra-seasonal interaction among the western Pacific subtropical high (WPSH), the South Asian High (SAH) and the Mongolian cyclone (MC), along with the alternation of sub-seasonal rain belt in China. The onset of South China Sea summer monsoon (SCSSM), the emergence of Meiyu over the Yangtze River and the starting of rainy season in North China are critical for both the seasonal and sub-seasonal prediction of summer rainfall in China. In mid-May, the eastward extension of SAH onto the South China Sea is vertically coupled with the retreat of WPSH, leading to the onset of SCSSM. Afterwards, the temporal evolution of sub-seasonal modes induced by WPSH, SAH and MC determines the beginning of rainy season over the Yangtze River and North China. Another predicting source of EASM sub-seasonal variation is the interaction between underlying forcing and atmospheric circulation. On one hand, the spring soil moisture over East China acts as an important precursor of summer monsoon onset and anomalous summer rainfall, and the spring snow cover over Eurasian continent could modulate the rainfall over South China. On the other hand, the relationship between tropical air-sea interaction and SCSSM onset shows evident interdecadal variation. The decaying rate of ENSO events and the mid-latitudinal wave activity in the upper troposphere can alter the sub-seasonal variation of EASM on interannual timescale. In addition, a new detrended DPCCA method is developed to investigate the interaction among multi-factors of EASM on multi-timescales. Unsolved questions about the sub-seasonal variation of EASM include objectively qualifying EASM sub-seasonal modes, the crucial process affecting year-by-year changes of EASM sub-seasonal modes, and co-effects of underlying factors on EASM sub-seasonal modes.
  • Fig. 1  Climatological onset process of South China Sea summer monsoon (a)360 K isentropic potential vorticity(the shaded, unit:PVU) and winds(vectors, unit:m·s-1) in Pentad 27, (b)upper-tropospheric diabatic heating(the shaded, unit:K·d-1) and air temperature(contours, unit:K) in Pentad 29, (c)110°-120°E averaged latitude-pressure cross section of diabatic heating(the shaded, unit:K·d-1), positive PV advection(contours, unit:10-5 PVU·s-1) and local meridional circulation (vectors, unit:m·s-1, upper-level ascending is represented by bold arrows) in Pentad 27, (d)110°-120°E averaged latitude-pressure cross section of diabatic heating(the shaded, unit:K·d-1), positive PV advection(contours, unit:10-5 PVU·s-1) and local meridional circulation (vectors, unit:m·s-1, upper-level ascending is represented by bold arrows) in Pentad 29, (e)the horizontal distribution of OLR(unit:W·m-2) in Pentad 27, (f)the horizontal distribution of OLR(unit:W·m-2) in Pentad 29

    Fig. 2  Spatial distribution of the climatological sub-seasonal(40-80 d) modes of the EASM (the shaded denotes rainfall, the vector denotes wind) (a)the rainfall and 850 hPa wind field regressed against the first dominant mode, (b)the rainfall and 850 hPa wind field regressed against the second dominant mode, (c)200 hPa wind field regressed against the first dominant mode, (d)200 hPa wind field regressed against the second dominant mode

    Fig. 3  Influences of spring soil moisture on the summer rainfall over East China(from Reference [68]) (anomalies are defined by results of sensitivity-minus-control runs) (a)rainfall anomalies(unit:mm·d-1) in sensitivity experiments forced by the wetter soil moisture in March, (b)rainfall anomalies(unit:mm·d-1) in sensitivity experiments forced by the drier soil moisture in March

    Fig. 4  Effects of spring snow over the Eurasian continent on the rainfall anomaly in China(from Reference [69]) (the shaded denotes passing the test of 0.05 level) (a)in-situ rainfall in JJA regressed against the snow water equivalent during Mar in CFSR, (b)in-situ rainfall in JJA regressed against the snow water equivalent during Apr in CFSR, (c)in-situ rainfall in JJA regressed against the snow water equivalent during May in CFSR, (d)snow water equivalent in zero leading month regressed against the predicted JJA rainfall starting from Mar in CFSv2, (e)snow water equivalent in zero leading month regressed against the predicted JJA rainfall starting from Apr in CFSv2, (f)snow water equivalent in zero leading month regressed against the predicted JJA rainfall starting from May in CFSv2

    Fig. 5  Distinct SSTA affecting the SCSSM onset time in different periods (a)horizontal distribution of SSTAs in Apr affecting the onset time of South China Sea summer monsoon during 1980-1993, (b)horizontal distribution of SSTAs in Apr affecting the onset time of South China Sea summer monsoon during 1994-2014, (c)the seasonal evolution of SSTAs in key regions during 1980-1993, (d)the seasonal evolution of SSTAs in key regions during 1994-2014

    Fig. 6  Two interannual dominant modes of the South Asian High(SAH) in May(from Reference [74])(the bold solid contour denotes 14270 gpm geopotential height, the shaded denotes climatological geopotential height greater than 14270 gpm, the black dashed line denotes climatological SAH ridgeline, the red dashed line denotes the ridgeline of SAH with the strong SAH meridional position mode, the blue dashed line denotes the ridgeline of SAH with the strong SAH meridional position mode) (a)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the strong SAH intensity mode, (b)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the weak SAH intensity mode, (c)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the strong SAH meridional position mode, (d)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the weak SAH meridional position mode

    Fig. 7  Comparison of the western Pacific subtropical high between deep summer(Jul-Aug) of 1983 and 2016(from Reference [75]) (a)wave activity flux(the vector, unit:m2·s-2) and relative vorticity (the contour, unit:10-5 s-1) at 200 hPa in deep summer of 1983, (b)vertical difference between 200 hPa and 850 hPa velocity potential (the contour, unit:106 m2·s-2) and divergent winds(the vector, unit:m·s-1) in deep summer of 1983, (c)SSTA(the shaded, unit:K) and 850 hPa stream function(the contour, unit:106 m2·s-2) in deep summer of 1983, (d)wave activity flux(the vector, unit:m2·s-2) and relative vorticity (the contour, unit:10-5·s-1) at 200 hPa in deep summer of 2016, (e)vertical difference between 200 hPa and 850 hPa velocity potential (the contour, unit:106 m2·s-2) and divergent winds(the vector, unit:m·s-1) in deep summer of 2016, (f)SSTA(the shaded, unit:K) and 850 hPa stream function(the contour, unit:106 m2·s-2) in deep summer of 2016

    Fig. 8  Climatological means of MJO index from Apr to Oct during 1981-2010 (a)intensity, (b)phase, (c)RMM1 and RMM2

  • [1]
    Chen L X, Zhu C W, Wang W, et al.Analysis of the characteristics of 30-60 day low-frequency oscillation over Asia during 1998 SCSMEX.Adv Atmos Sci, 2001, 18:623-638. doi:  10.1007/s00376-001-0050-0
    [2]
    Zhu C W, Nakazawa T, Li J P, et al.The 30-60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998.Geophys Res Lett, 2003, 30, 1952, DOI: 10.1029/2003GL017817.
    [3]
    Mao J Y, Chan J C L.Intraseasonal variability of the South China Sea summer monsoon.J Climate, 2005, 18(13):2388-2402. doi:  10.1175/JCLI3395.1
    [4]
    Morss R E, Demuth J L, Lazo J K.Communicating uncertainty in weather forecasts:A survey of the US public.Wea Forecasting, 2008, 23(5):974-991. doi:  10.1175/2008WAF2007088.1
    [5]
    Vitart F, Robertson A W, Anderson D L T.Subseasonal to Seasonal Prediction Project, 2012:Bridging the gap between weather and climate.WMO Bulletin, 2012, 61(2):23-28. https://public.wmo.int/en/resources/bulletin/subseasonal-seasonal-prediction-project-bridging-gap-between-weather-and-climate
    [6]
    竺可桢.东南季风与中国之雨量.地理学报, 1934, 1:1-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB193401000.htm
    [7]
    涂长望, 黄仕松.夏季风进退.气象杂志, 1944, 18:1-20. http://d.old.wanfangdata.com.cn/Periodical/gyqx199903016
    [8]
    陶诗言, 陈隆勋.夏季亚洲大陆上空大气环流的结构.气象学报, 1957, 2(3):214-215. http://cdmd.cnki.com.cn/Article/CDMD-80058-2006189546.htm
    [9]
    叶笃正, 陶诗言, 李麦村.在六月和十月大气环流的突变现象.气象学报, 1958, 29:249-263. http://www.cnki.com.cn/Article/CJFDTotal-QXXB195804004.htm
    [10]
    高由禧, 徐淑英.东亚季风的若干问题.北京:科学出版社, 1962.
    [11]
    陶诗言, 朱福康.夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系.气象学报, 1964, 9(4):3-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004483565
    [12]
    魏维, 张人禾, 温敏.南亚高压的南北偏移与我国夏季降水的关系.应用气象学报, 2012, 23(6):650-659. doi:  10.3969/j.issn.1001-7313.2012.06.002
    [13]
    Lau K M, Li M T.The monsoon of East Asia and its global associations:A survey.Bull Amer Meteor Soc, 1984, 65:114-125. doi:  10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2
    [14]
    郭品文, 宋超辉.南亚和东亚热带夏季风分界域变化.应用气象学报, 2014, 25(5):527-537. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140502&flag=1
    [15]
    Tao S Y, Chen L X.A Review of Recent Research on the East Asian Summer Monsoon in China//Chang C P, Krishramuti T N.Monsoon Meteorology.Oxford: Oxford University Press, 1987: 60-92.
    [16]
    Lau K M, Yang G J, Shen S H.Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia.Mon Wea Rev, 1988, 116(1):18-37. doi:  10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2
    [17]
    贾小龙, 陈丽娟, 高辉, 等.我国短期气候预测技术发展.应用气象学报, 2013, 24(6):641-655. doi:  10.3969/j.issn.1001-7313.2013.06.001
    [18]
    He J H, Zhao P, Zhu C W, et al.Discussion of some problems as to the East Asian subtropical monsoon.Acta Meteor Sinica, 2008, 22:419-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e200804003
    [19]
    Zhu C W, Zhou X J, Zhao P, et al.Onset of East Asian subtropical summer monsoon and rainy season in China.Sci China(Ser D), 2011, 54:1845-1853. doi:  10.1007/s11430-011-4284-0
    [20]
    He J H, Liu B Q.The East Asian subtropical summer monsoon:Recent progress.J Meteor Res, 2016, 30(2):135-155. doi:  10.1007/s13351-016-5222-z
    [21]
    Duan A M, Wu G X, Liu Y M, et al.Weather and climate effects of the Tibetan Plateau.Adv Atmos Sci, 2012, 29(5):978-992. doi:  10.1007/s00376-012-1220-y
    [22]
    吴国雄, 何编, 刘屹岷, 等.青藏高原和亚洲夏季风动力学研究的新进展.大气科学, 2016, 40(1):22-32. http://d.old.wanfangdata.com.cn/Periodical/daqikx201601003
    [23]
    Zhang R H, Sumi A, Kimoto M.Impact of El Niño on the East Asian monsoon:A diagnostic study of the 86/87 and 91/92 events.J Meteor Soc Japan, 1996, 74:49-62. doi:  10.2151/jmsj1965.74.1_49
    [24]
    Wang B, Wu R G, Fu X H.Pacific-East Asian teleconnection:How does ENSO affect East Asian climate?J Climate, 2000, 13:1517-1536. doi:  10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [25]
    Li T, Wang B.A review on the western North Pacific monsoon:Synoptic-to-interannual variabilities.Terr Atmos Oceanic Sci, 2005, 16:285-314. doi:  10.3319/TAO.2005.16.2.285(A)
    [26]
    Xie S P, Kosaka Y, Du Y, et al.Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer:A review.Adv Atmos Sci, 2016, 33(4):411-432. doi:  10.1007/s00376-015-5192-6
    [27]
    Wu R G.Relationship between Indian and East Asian summer rainfall variations.Adv Atmos Sci, 2017, 34(1):4-15. doi:  10.1007/s00376-016-6216-6
    [28]
    Li C F, Chen W, Hong X W, et al.Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?-Role of midlatitude circulation in August.Adv Atmos Sci, 2017, 34(11):1290-1300. doi:  10.1007/s00376-017-7003-8
    [29]
    Jiang W P, Huang G, Hu K M, et al.Diverse Relationship between ENSO and the Northwest Pacific Summer Climate among CMIP5 Models:Dependence on the ENSO Decay Pace.J Climate, 2017, 30:109-127. doi:  10.1175/JCLI-D-16-0365.1
    [30]
    陈丽娟, 袁媛, 杨明珠, 等.海温异常对东亚夏季风影响机理的研究.应用气象学报, 2013, 24(5):521-532. doi:  10.3969/j.issn.1001-7313.2013.05.002
    [31]
    Enomoto T, Hoskins B J, Matsuda Y.The formation mechanism of the Bonin high in August.Q J Roy Meteor Soc, 2003, 129:157-178. doi:  10.1256/qj.01.211
    [32]
    晏红明, 王灵, 李蕊.1-3月欧亚大陆热力变化及其与我国降水的关系.应用气象学报, 2016, 27(2):209-219. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160209&flag=1
    [33]
    Lu R Y.Associations among the components of the East Asian summer monsoon system in the meridional direction.J Meteor Soc Japan, 2004, 82:155-165. doi:  10.2151/jmsj.82.155
    [34]
    Ye H, Lu R Y.Subseasonal variation in ENSO-related East Asian rainfall anomalies during summer and its role in weakening the relationship between the ENSO and summer rainfall in Eastern China since the late 1970s.J Climate, 2011, 24:2271-2284. doi:  10.1175/2010JCLI3747.1
    [35]
    李建平, 任荣彩, 齐义泉, 等.亚洲区域海-陆-气相互作用对全球和亚洲气候变化的作用研究进展.大气科学, 2013, 37(2):518-538. http://www.cnki.com.cn/Article/CJFDTotal-DQXK201302024.htm
    [36]
    Murakami T, Nakazawa T, He J.On the 40-50 day oscillations during the 1979 northern hemisphere summer.Ⅰ:Phase propagation.J Meteor Soc Japan, 1984, 62:440-468. doi:  10.2151/jmsj1965.62.3_440
    [37]
    Lau K M, Chan P H.The 40-50 day oscillation and the El Niño/Southern Oscillation:A new perspective.Bull Amer Meteor Soc, 1986, 67(5):533. doi:  10.1175/1520-0477(1986)067<0533:TDOATE>2.0.CO;2
    [38]
    Wang B, Xu X.Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation.J Climate, 1997, 10:1071-1085. doi:  10.1175/1520-0442(1997)010<1071:NHSMSA>2.0.CO;2
    [39]
    Song Z H, Zhu C W, Su J Z, et al.Coupling modes of climatological intraseasonal oscillation in the East Asian summer monsoon.J Climate, 2016, 29:6263-6382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f2cae9ccd39200687d248a07bb7fbb9
    [40]
    Lian Y, Shen B, Li S, et al.Mechanisms for the formation of northeast China cold vortex and its activities and impacts:An overview.J Meteor Res, 2016, 30(6):881-896. doi:  10.1007/s13351-016-6003-4
    [41]
    Bueh C L, Fu X Y, Xie Z W.Large scale circulation features typical of wintertime extensive and persistent low temperature events in China.Atmos Oceanic Sci Lett, 2011, 4:235-241. doi:  10.1080/16742834.2011.11446935
    [42]
    布和朝鲁, 谢作威.东北冷涡环流及其动力学特征.气象科技进展, 2013, 3(3):34-39. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201303008
    [43]
    Mao J Y, Chan J C L, Wu G.Interannual variations of early summer monsoon rainfall over south China under different PDO backgrounds.Int J Climatol, 2011, 31(6):847-862. doi:  10.1002/joc.v31.6
    [44]
    Yang J, Bao Q, Gong D Y, et al.Distinct quasi-biweekly variations of the subtropical East Asian monsoon during early and late summers.Climate Dyn, 2014, 42:1469-1486. doi:  10.1007/s00382-013-1728-6
    [45]
    Zhang C D.Madden-Julian Oscillation.Rev Geophys, 2005, 43, RG2003, DOI: 10.1029/2004RG000158.
    [46]
    Lee J Y, Wang B, Wheeler M C, et al.Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region.Climate Dyn, 2013, 40(1-2):493-509. doi:  10.1007/s00382-012-1544-4
    [47]
    Li T.Recent advance in understanding the dynamics of the Madden-Julian oscillation.J Meteor Res, 2014, 28(1):1-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e201401003
    [48]
    Blackmon M L, Lee Y H, Wallace J M.Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales.J Atmos Sci, 1984, 41(6):961-980. doi:  10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2
    [49]
    Yang J, Wang B, Wang B, et al.Biweekly and 21-30-Day variations of the subtropical summer monsoon rainfall over the Lower Reach of the Yangtze River Basin.J Climate, 2010, 23:1146-1159. doi:  10.1175/2009JCLI3005.1
    [50]
    Hu W T, Duan A M, Li Y, et al.The intraseasonal oscillation of eastern Tibetan Plateau precipitation in response to the summer Eurasian wave train.J Climate, 2016, 29:7215-7230. doi:  10.1175/JCLI-D-15-0620.1
    [51]
    Lau K M, Kim K M.The 2010 Pakistan flood and Russian heat wave:Teleconnection of hydrometeorological extremes.J Hydrometeorol, 2012, 13(1):392-403. doi:  10.1175/JHM-D-11-016.1
    [52]
    Yang J, Bao Q, Wang B, et al.Characterizing two types of transient intraseasonal oscillations in the eastern Tibetan Plateau summer rainfall.Climate Dyn, 2017, 48(5-6):1749-1768. doi:  10.1007/s00382-016-3170-z
    [53]
    Zhang C, Gottschalck J, Maloney E D, et al.Cracking the MJO nut.Geophys Res Lett, 2013, 40:1223-1230, DOI: 10.1002/grl.50244.
    [54]
    Li S, Robertson A W.Evaluation of sub-monthly forecast skill from global ensemble prediction systems.Mon Wea Rev, 2015, 143(7):2871-2889. doi:  10.1175/MWR-D-14-00277.1
    [55]
    Koster R D, Guo Z C, Dirmeyer P A, et al.The second phase of the global land-atmosphere coupling experiment:Soil moisture contributions to subseasonal forecast skill.J Hydrometeorol, 2010, DOI: 10.1175/2011JHM1365.1.
    [56]
    Yang S, Kumar A, Wang W, et al.Snow-albedo feedback and seasonal climate variability over North America.J Climate, 2001, 14:4245-4248. doi:  10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2
    [57]
    Deser C, Tomas R A, Peng S.The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies.J Climate, 2007, 20:4751-4767. doi:  10.1175/JCLI4278.1
    [58]
    Baldwin M P, Dunkerton T J.Stratospheric harbingers of anomalous weather regimes.Science, 2001, 244:581-584. doi:  10.1126-science.1063315/
    [59]
    Li T, Wang B, Wu B, et al.Theories on formation of an anomalous anticyclone in western North Pacific during El Niño:A review.J Meteor Res, 2017, 31(6):987-1006. doi:  10.1007/s13351-017-7147-6
    [60]
    Su Q, Lu R Y, Li C F.Large-scale circulation anomalies associated with interannual variation in monthly rainfall over South China from May to August.Adv Atmos Sci, 2014, 31(2):273-282. doi:  10.1007/s00376-013-3051-x
    [61]
    Wang B, Li J, He Q.Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957-2016).Adv Atmos Sci, 2017, 34(10):1235-1248. doi:  10.1007/s00376-017-7016-3
    [62]
    任宏利, 吴捷, 赵崇博, 等. MJO预报研究进展.应用气象学报, 2015, 26(6):658-668. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150602&flag=1
    [63]
    贺铮, 徐邦琪, 高迎侠.BCC S2S模式对亚洲夏季风准双周振荡预报评估.应用气象学报, 2018, 29(4):436-448. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180405&flag=1
    [64]
    陈官军, 魏凤英, 姚文清, 等.基于南海夏季风季节内振荡的降水延伸预报试验.应用气象学报, 2016, 27(3):273-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160302&flag=1
    [65]
    Liu B Q, Zhu C W.A possible precursor of the South China Sea summer monsoon onset:Effect of the South Asian High.Geophys Res Lett, 2016, 43, DOI: 10.1002/2016GL071083.
    [66]
    Liu G, Wu R G, Wang H M.Contribution of intraseasonal oscillation to long-duration summer precipitation events over Southern China.Atmos Oceanic Sci Lett, 2017, 10(1):82-88. doi:  10.1080/16742834.2017.1233799
    [67]
    Liu L, Zhang R H, Zuo Z Y.Effect of spring precipitation on summer precipitation in Eastern China:Role of soil moisture.J Climate, 2017, 30:9183-9194. doi:  10.1175/JCLI-D-17-0028.1
    [68]
    Zuo Z Y, Zhang R H.Influence of soil moisture in eastern China on East Asian summer monsoon.Adv Atmos Sci, 2016, 33:151-163. doi:  10.1007/s00376-015-5024-8
    [69]
    Zuo Z Y, Yang S, Zhang R H, et al.Response of summer rainfall over China to spring snow anomalies over Siberia in the NCEP CFSv2 reforecast.Quart J Royal Meteor Soc, 2015, 141:939-944. doi:  10.1002/qj.2413
    [70]
    Zuo Z Y, Zhang R H, Wu B Y, et al.Decadal variability in springtime snow over Eurasia:Relation with circulation and possible influence on springtime rainfall over China.Int J Climatol, 2012, 32:1336-1345. doi:  10.1002/joc.2355
    [71]
    Zuo Z Y, Yang S, Wang W Q, et al.Relationship between anomalies of Eurasian snow and southern China rainfall in winter.Environ Res Lett, 2011, 6, DOI: 10.1088/1748-9326/6/4/045402.
    [72]
    He Q, Zuo Z Y, Zhang R H, et al.Prediction skill and predictability of Eurasian snow cover fraction in the NCEP Climate Forecast version 2 reforecasts.Int J Climatol, 2016, 36:4071-4084. doi:  10.1002/joc.4618
    [73]
    Liu B Q, Zhu C W, Yuan Y, et al.Two types of interannual variability of South China Sea summer monsoon onset related to the SST anomalies before and after 1993/94.J Climate, 2016, 29:6957-6971. doi:  10.1175/JCLI-D-16-0065.1
    [74]
    Liu B Q, Zhu C W, Yuan Y, Two interannual dominant modes of the South Asian High in May and their linkage to the tropical SST anomalies.Climate Dyn, 2017, 49:2705-2720. doi:  10.1007/s00382-016-3490-z
    [75]
    Liu B Q, Zhu C W, Su J Z, et al.Why was the western Pacific subtropical anticyclone weaker in late summer after the 2015/2016 super El Niño?Int J Climatol, 2018, 38:55-65. doi:  10.1002/joc.5160
    [76]
    Yuan N M, Fu Z T, Zhang H, et al.Detrended partial-cross-correlation analysis:A new method for analyzing correlations in complex system.Scientific Reports, 2016, 5:8143. http://cn.bing.com/academic/profile?id=1683baf2999075656f57bc56da29fd4f&encoded=0&v=paper_preview&mkt=zh-cn
    [77]
    Podobnik B, Stanley H E.Detrended cross-correlation analysis:A new method for analyzing two nonstationary time series.Phys Rev Lett, 2008, 100:084102. doi:  10.1103/PhysRevLett.100.084102
    [78]
    Zebende G F.DCCA cross-correlation coefficients:Quantifying level of cross-correlation.Physica A, 2011, 390:614-618. doi:  10.1016/j.physa.2010.10.022
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (5891) PDF downloads(249) Cited by()
    • Received : 2019-02-18
    • Accepted : 2019-04-26
    • Published : 2019-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint