Zhang Daquan, Zheng Zhihai, Chen Lijuan, et al. Advances on the predictability and prediction methods of 10-30 d extended range forecast. J Appl Meteor Sci, 2019, 30(4): 416-430. DOI:  10.11898/1001-7313.20190403.
Citation: Zhang Daquan, Zheng Zhihai, Chen Lijuan, et al. Advances on the predictability and prediction methods of 10-30 d extended range forecast. J Appl Meteor Sci, 2019, 30(4): 416-430. DOI:  10.11898/1001-7313.20190403.

Advances on the Predictability and Prediction Methods of 10-30 d Extended Range Forecast

DOI: 10.11898/1001-7313.20190403
  • Received Date: 2019-02-18
  • Rev Recd Date: 2019-04-26
  • Publish Date: 2019-07-31
  • The 10-30 d extended range forecast (ERF) fills the gap between traditional weather forecast and short-term climate prediction, and it plays an important role in the decision making of disaster prevention and mitigation. Therefore, ERF becomes one hot topic in both scientific research and predictive operations. The research progress and operational status of ERF are reviewed from three aspects, the source of predictability, sub-seasonal climate phenomenon and operational predictions. The research achievements on predictability of ERF and its applications are specially emphasized, and some new forecasting methods of ERF in recent years are summarized. At last, key scientific issues and technical problems are raised and some thoughts and possible ways enhancing the predictive skills of ERF are proposed.ERF exceeds time limits of traditional daily weather forecast, largely beyond the atmospheric memory of initial conditions, while it is too short to consider the variability of the ocean, which makes it difficult to beat persistence. Fortunately, recent years, some research work indicates the existence of some important sources of predictability at this time range, such as Madden-Julian oscillation (MJO), ENSO, soil moisture, snow cover and sea ice, stratosphere-troposphere interaction, ocean conditions, tropics-extratropics teleconnections, etc. Verification results of numerical model indicate that upper bounds of the prediction skill can be extended to 4 weeks. However, the complexity and diversity of mechanisms associated with the connection between source of predictability and climate variables prevent the potential predictability from being transformed into realized forecast skill. The effective forecast of most climate variables of numerical model is still limited within 2 weeks.Although the direct application of numerical dynamical model output in ERF is unsatisfactory, some research institutes and operational centers still conduct a series of scientific research and propose some practical methods. According to utilization of numerical model data, those forecast methods can be divided into two categories, i.e., statistical methods and the combination of both statistical and dynamical methods. Based on dynamical forecast model, Beijing Climate Center develops several methods, including Dynamical-Analogue Ensemble Forecasting (DAEF), statistical downscaling, ensemble forecast of ERF based on predictable components and probabilistic calibration of model biases. On the other side, based on predictable signals of extended range, such as low frequency variation of atmosphere, MJO and periodic relationship, some statistical forecast methods are proposed, which show considerable predictive skill and good prospects of application.
  • Fig. 1  MSSS of pentad mean 500 hPa geopotential height between scheme IOBO and scheme IOBC from 1991 to 2000(from Reference [47])

    Fig. 2  Scheme of extended-range numerical ensemble forecast based on predictable components

  • [1]
    Vitart F, Ardilouze C, Bonet A, et al.The subseasonal to seasonal (S2S) prediction project database.Mon Wea Rev, 2017, 99(1):163-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=501b6662bdc004d098df7fd96b4d7dd7
    [2]
    ECWMF.A Roadmap to 2025: The Strength of a Common Goal.Reading: ECWMF, 2016: 1-10.
    [3]
    Black J, Johnson N C, Baxter S, et al.The prediction and forecast skill of northern hemisphere teleconnection patterns for lead times of 3-4 weeks.Mon Wea Rev, 2017, 145(7):2855-2877. doi:  10.1175/MWR-D-16-0394.1
    [4]
    Zhu Y, Zhou X, Pea M, et al.Impact of sea surface temperature forcing on weeks 3 and 4 forecast skill in the NCEP global ensemble forecasting system.Wea Forecasting, 2017, 32(6):2159-2174. doi:  10.1175/WAF-D-17-0093.1
    [5]
    Vitart F.Monthly forecasting at ECMWF.Mon Wea Rev, 2004, 132(12):2761-2779. doi:  10.1175/MWR2826.1
    [6]
    Waliser D, Weickmann K, Dole R, et al.The Experimental MJO Prediction Project.Bull Amer Meteor Soc, 2006, 87(4):425-431. doi:  10.1175/BAMS-87-4-425
    [7]
    贾小龙, 陈丽娟, 高辉, 等.我国短期气候预测技术进展.应用气象学报, 2013, 24(6):641-655. doi:  10.3969/j.issn.1001-7313.2013.06.001
    [8]
    任宏利, 吴捷, 赵崇博, 等.MJO预报研究进展.应用气象学报, 2015, 26(6):658-668. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150602&flag=1
    [9]
    Baldwin M P, Dunkerton T J.Propagation of the Arctic Oscillation from the stratosphere to the troposphere.J Geophys Res, 1999, 104(D24):30937-30946. doi:  10.1029/1999JD900445
    [10]
    Baldwin M P, Stephenson D B, Thompson D W, et al.Stratospheric memory and skill of extended-range weather forecast.Science, 2003, 301(5633):636-640. doi:  10.1126/science.1087143
    [11]
    Polvani L M, Kushner P J.Tropospheric response to stratospheric perturbations in a relatively simple general circulation model.Geophy Res Lett, 2002, 29(7):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83821cf29649e4cb66be1a0f893a3344
    [12]
    Koster R D, Suarez M J.Impact of land surface initialization on seasonal precipitation and temperature prediction.J Hydrometeorol, 2003, 4(2):408-423. doi:  10.1175/1525-7541(2003)4<408:IOLSIO>2.0.CO;2
    [13]
    Cohen J, Entekhabi D.Eurasian snow cover variability and Northern Hemisphere climate variability.Geophy Res Lett, 1999, 26(3):345-348. doi:  10.1029/1998GL900321
    [14]
    Holland M M, Blanchard-Wrigglesworth E, Kay J, et al.Initial-value predictability of Antarctic ice in the Community Climate System Model 3.Geophys Res Lett, 2013, 40(10):2121-2124. doi:  10.1002/grl.50410
    [15]
    Thompson P D.Uncertainty of initial state as a factor in the predictability of large-scale atmospheric flow patterns.Tellus, 1957, 9(3):275-295. doi:  10.3402/tellusa.v9i3.9111
    [16]
    Lorenz E N.Deterministic nonperiodic flow.J Atmos Sci, 1963, 20(2):130-141. doi:  10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [17]
    丑纪范.长期数值天气预报.北京:气象出版社, 1986.
    [18]
    李崇银.气候变化及可预报性(CLIVAR)——气候研究的国际新计划.气候与环境研究, 1996, 1(1):87-95. doi:  10.3878/j.issn.1006-9585.1996.01.09
    [19]
    穆穆, 李建平, 丑纪范, 等.气候系统可预报性理论研究.气候与环境研究, 2002, 7(2):227-235. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200202010
    [20]
    Li J, Ding R.Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs.Mon Wea Rev, 2011, 139(10):3265-3283. doi:  10.1175/MWR-D-10-05020.1
    [21]
    Molteni F, Buzzia R, Palmer T N, et al.The ECMWF ensemble prediction system:Methodology and validation.Q J Roy Meteor Soc, 1996, 122(52):73-119. http://cn.bing.com/academic/profile?id=cd07151aa70b5309e0b11d32271ae059&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    丁瑞强, 李建平.天气可预报性的时空分布.气象学报, 2009, 67(3):343-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200903001
    [23]
    Kalnay E.大气模式、资料同化和可预报性.蒲朝霞, 杨福全, 邓北胜, 等译.北京: 气象出版社, 2005.
    [24]
    丑纪范.大气科学中的非线性与复杂性.北京:气象出版社, 2002.
    [25]
    丑纪范, 郑志海, 孙树鹏.10-30 d延伸期数值天气预报的策略思考——直面混沌.气象科学, 2010, 30(5):569-573. doi:  10.3969/j.issn.1009-0827.2010.05.001
    [26]
    Reichler T J, Roads J O.The role of boundary and initial conditions for dynamical seasonal predictability.Nonlinear Proc Geoph, 2003, 10(3):211-232. doi:  10.5194/npg-10-211-2003
    [27]
    郑志海, 任宏利, 黄建平.基于季节气候可预报分量的相似误差订正方法和数值实验.物理学报, 2009, 58(10):7359-7367. http://d.old.wanfangdata.com.cn/Periodical/wlxb200910114
    [28]
    郑志海, 封国林, 丑纪范, 等.数值预报中自由度的压缩及误差相似性规律.应用气象学报, 2010, 21(2):139-148. doi:  10.3969/j.issn.1001-7313.2010.02.002
    [29]
    刘景鹏, 陈丽娟, 李维京, 等.月尺度气温可预报性对资料长度的依赖及可信度.应用气象学报, 2015, 26(2):151-159. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150203&flag=1
    [30]
    Liu J, Li W, Chen L, et al.Estimation of the monthly precipitation predictability limit in China using the nonlinear local Lyapunov exponent.J Meteor Res, 2016, 30(1):93-102. doi:  10.1007/s13351-015-5049-z
    [31]
    Sarachik E S, Cane M A.The El Niño-Southern Oscillation Phenomenon.Cambridge:Cambridge University Press, 2010.
    [32]
    张人禾, 周广庆, 巢纪平.ENSO动力学与预测.大气科学, 2003, 27(4):674-688. doi:  10.3878/j.issn.1006-9895.2003.04.16
    [33]
    王会军, 孙建奇, 郎咸梅, 等.几年来我国气候年际变异和短期气候预测研究的一些新成果.大气科学, 2008, 32(4):806-814. doi:  10.3878/j.issn.1006-9895.2008.04.09
    [34]
    陈丽娟, 李想, 李维京, 等.2015/2016年超强El Niño事件背景下我国月预测技巧差异分析.大气科学学报, 2016, 39(6):756-765. http://www.cnki.com.cn/Article/CJFDTotal-NJQX201606005.htm
    [35]
    Zhao P, Zhu Y N, Zhang R H.An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability.Climate Dyn, 2007, 29(2-3):293-303. doi:  10.1007/s00382-007-0236-y
    [36]
    晏红明, 肖子牛.印度洋海温异常对亚洲季风区天气气候影响的数值模拟研究.热带气象学报, 2000, 16(1):18-27. doi:  10.3969/j.issn.1004-4965.2000.01.003
    [37]
    Zuo J, Li W, Sun C, et al.Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon.Adv Atmos Sci, 2013, 30(4):1173-1186. doi:  10.1007/s00376-012-2125-5
    [38]
    杨修群, 谢倩, 黄士松.大西洋海温异常对东亚夏季大气环流影响的数值试验.气象学报, 1992, 50(3):349-354. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199203011.htm
    [39]
    Wang X, Zheng Z, Feng G.Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region.Theor Appl Climatol, 2018, 132(1-2):31-40. doi:  10.1007/s00704-017-2071-3
    [40]
    Saha S, Moorthi S, Wu X, et al.The NCEP Climate Forecast System version 2.J Climate, 2014, 27(6):2185-2208. doi:  10.1175/JCLI-D-12-00823.1
    [41]
    Vitart F, Molteni F.Dynamical extended-range prediction of early monsoon rainfall over India.Mon Wea Rev, 2009, 137(4):1480-1492. doi:  10.1175/2008MWR2761.1
    [42]
    Reichler T J, Roads J O.Long-range predictability in the tropics.Part Ⅰ:Monthly averages.J Climate, 2005, 18(5):619-633. doi:  10.1175/JCLI-3294.1
    [43]
    Reichler T J, Roads J O.Long-range predictability in the tropics.Part Ⅱ:30-60-day variability.J Climate, 2005, 18(5):634-650. doi:  10.1175/JCLI-3295.1
    [44]
    DeMott C A, Stan C, Randall D A, et al.Intraseasonal variability in coupled GCMs:The roles of ocean feedbacks and model physics.J Climate, 2014, 7(13):4970-4995. http://cn.bing.com/academic/profile?id=3fce82d5b06d4bfca1c2241b07f50c86&encoded=0&v=paper_preview&mkt=zh-cn
    [45]
    Fu X, Wang B, Waliser D E, et al.Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations.J Atmos Sci, 2007, 64(1):157-174. doi:  10.1175/JAS3830.1
    [46]
    Fu X, Wang B, Lee J Y, et al.Sensitivity of dynamical intraseasonal prediction skills to different initial conditions.Mon Wea Rev, 2011, 139(8):2572-2592. doi:  10.1175/2011MWR3584.1
    [47]
    汪栩加, 郑志海, 封国林, 等.延伸期预报中大气初值与海温边值的相对作用.气象学报, 2017, 75(1):111-122. http://d.old.wanfangdata.com.cn/Periodical/qxxb201701008
    [48]
    Charney J G, Shukla J.Predictability of Monsoons//Monsoon Dynamics.Cambridge: Cambridge University Press, 1981: 99-109.
    [49]
    Zhu H, Wheeler M C, Sobel A H, et al.Seamless precipitation prediction skill in the tropics and extratropics from a global model.Mon Wea Rev, 2014, 142(4):1556-1569. doi:  10.1175/MWR-D-13-00222.1
    [50]
    Zhang C.Madden-Julian oscillation:Bridging weather and climate.Bull Amer Meteor Soc, 2013, 94(12):1849-1870. doi:  10.1175/BAMS-D-12-00026.1
    [51]
    Robertson A W, Kumar A, Pena M, et al.Improving and promoting subseasonal to seasonal prediction.Bull Amer Meteor Soc, 2015, 96(3):ES49-ES53. doi:  10.1175/BAMS-D-14-00139.1
    [52]
    Wheeler M, Hendon H H.An all-season real-time multivariate MJO index:Development of the index for monitoring and prediction in Australia.Mon Wea Rev, 2004, 132(8):1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [53]
    Neena J M, Lee J Y, Waliser B, et al.Predictability of the Madden-Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE).J Climate, 2014, 27(27):4531-4543. http://cn.bing.com/academic/profile?id=fafd37e8495aa81776f9b8ef0656d731&encoded=0&v=paper_preview&mkt=zh-cn
    [54]
    Wu J, Ren H L, Zuo J Q, et al.MJO prediction skill, predictability, and teleconnection impacts in the Beijing Climate Center Atmospheric General Circulation Model.Dynam Atmos Oceans, 2016, 75(9):78-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1223cbf6e368e5f28a01b6bb1e049af1
    [55]
    Miyakawa T, Satoh M, Miura H, et al.Madden-Julian oscillation prediction skill of a new generation global model demonstrated using a supercomputer.Nature Communications, 2014, 5:3769. doi:  10.1038/ncomms4769
    [56]
    MacLachlan C, Arribas A, Peterson K A, et al.Global Seasonal forecast system version 5(GloSea5):A high-resolution seasonal forecast system.Q J Roy Meteor Soc, 2015, 141(689):1072-1084. doi:  10.1002/qj.2396
    [57]
    Liu X, Wu T, Yang S, et al.MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center.Climate Dyn, 2017, 48(9-10):3283-3307. doi:  10.1007/s00382-016-3264-7
    [58]
    Green B W, Sun S, Bleck R, et al.Evaluation of MJO predictive skill in multiphysics and multimodel global ensembles.Mon Wea Rev, 2017, 145(7):2555-2574. doi:  10.1175/MWR-D-16-0419.1
    [59]
    Lee J Y, Wang B, Wheeler M C, et al.Real-time multivariate indices for the boreal summer intra-seasonal oscillation over the Asian summer monsoon region.Climate Dyn, 2013, 40(1-2):493-509. doi:  10.1007/s00382-012-1544-4
    [60]
    Lee S S, Wang B, Waliser D, et al.Predictability and prediction skill of the boreal summer intra-seasonal oscillation in the Intra-seasonal Variability Hindcast Experiment.Climate Dyn, 2015, 45(7-8):2123-2135. doi:  10.1007/s00382-014-2461-5
    [61]
    Jie W, Vitart F, Wu T, et al.Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction project (S2S) database.Q J Roy Meteor Soc, 2017, 143(706):2282-2295. doi:  10.1002/qj.2017.143.issue-706
    [62]
    Liebmann B, Hendon H H, Glick J D.The relationship between the tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian Oscillation.J Meteor Soc Japan, 1994, 72(3):401-412. doi:  10.2151/jmsj1965.72.3_401
    [63]
    Zhou W, Chan J C.Intraseasonal oscillations and the South China Sea summer monsoon onset.Int J Climatol, 2005, 25(12):1585-1609. doi:  10.1002/(ISSN)1097-0088
    [64]
    李崇银, 潘静, 宋洁.MJO研究新进展.大气科学, 2013, 37(2):229-252. doi:  10.3969/j.issn.1674-7097.2013.02.011
    [65]
    Ren P, Ren H, Fu X, et al.Impact of boreal summer intraseasonal oscillation on rainfall extremes in southeastern China and its predictability in CFSv2.J Geophys Res, 2018, 123(9):4423-4442. http://cn.bing.com/academic/profile?id=65103732c1e0eaa6f1695c97a4093419&encoded=0&v=paper_preview&mkt=zh-cn
    [66]
    吴捷, 任宏利, 赵崇博, 等.国家气候中心MJO监测预测业务产品研发与应用.应用气象学报, 2016, 27(6):641-653. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160601&flag=1
    [67]
    袁媛, 高辉, 柳艳菊.2016年夏季我国东部降水异常特征及其成因简析.气象, 2017, 43(1):115-121. http://www.cnki.com.cn/Article/CJFDTotal-QXXX201701013.htm
    [68]
    Zhou W, Chan J C L.ENSO and South China Sea summer monsoon onset.Int J Climatol, 2007, 27(2):157-167. doi:  10.1002/(ISSN)1097-0088
    [69]
    高辉, 袁媛, 洪洁莉, 等.2016年汛期气候预测效果评述及主要先兆信号与应用.气象, 2017, 43(4):486-494. http://d.old.wanfangdata.com.cn/Periodical/qx201704011
    [70]
    陈丽娟, 顾薇, 龚振淞, 等.影响2018年汛期气候的先兆信号和预测效果评估.气象, 2019, 45(4):553-564. http://www.cqvip.com/QK/95348X/201904/7001969243.html
    [71]
    Ashok K, Behera S K, Rao S A, et al.El Niño Modoki and its possible teleconnection.J Geophys Res, 2007, 112:C11007. doi:  10.1029/2006JC003798
    [72]
    袁媛, 李崇银, 凌健.不同分布型El Niño期间MJO活动的差异.中国科学(地球科学), 2015, 45(3):318-334. http://www.cnki.com.cn/article/cjfdtotal-jdxk201503006.htm
    [73]
    陈丽娟, 顾薇, 丁婷, 等.2015年汛期气候预测先兆信号的综合分析.气象, 2016, 42(4):496-506. http://d.old.wanfangdata.com.cn/Periodical/qx201604014
    [74]
    赵俊虎, 王永光. 2018年秋季我国气候异常及成因分析.气象, 2019, 45(4):565-576. http://d.old.wanfangdata.com.cn/Periodical/qx201904011
    [75]
    Yoo J H, Robertson A W, Kang I S.Analysis of intraseasonal and interannual variability of the Asian summer monsoon using a hidden Markov model.J Climate, 2010, 23(20):5498-5515. doi:  10.1175/2010JCLI3473.1
    [76]
    Kessler W S, McPhaden M J, Weickmann K M.Forcing of intraseasonal Kelvin waves in the equatorial Pacific.J Geophys Res, 1995, 100(C6):10613-10631. doi:  10.1029/95JC00382
    [77]
    Vitart F, Balmaseda M A, Ferranti L, et al.Westerly wind events and the 1997/98 El-Niño event in the ECMWF seasonal forecasting system.J Climate, 2003, 16(19):3153-3170. doi:  10.1175/1520-0442(2003)016<3153:WWEATE>2.0.CO;2
    [78]
    Riddle E E, Stoner M, Johnson N, et al.The impact of the MJO on clusters of wintertime circulation anomalies over the North American region.Climate Dyn, 2013, 40(7-8):1749-1766. doi:  10.1007/s00382-012-1493-y
    [79]
    Johnson N C, Collins D C, Feldstein S B, et al.Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and MJO.Wea Forecasting, 2014, 29(1):23-38. doi:  10.1175/WAF-D-13-00102.1
    [80]
    Thompson D W J, Baldwin M P, Wallace J M.Stratospheric connection to Northern Hemisphere winter-time weather:Implications for prediction.J Climate, 2002, 15(12):1421-1428. doi:  10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2
    [81]
    Lehtonen I, Karpechko A Y.Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings.J Geophys Res, 2016, 121(4):1591-1610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d99fbac708a09c1541f12154087772d6
    [82]
    Kolstad E W, Breiteig T, Scaife A A.The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere.Q J Roy Meteor Soc, 2010, 136(649):886-893. doi:  10.1002/qj.v136:649
    [83]
    Karpechko A Y, Hitchcock P, Peters D H W, et al.Predictability of downward propagation of major sudden stratospheric warmings.Q J Roy Meteor Soc, 2017, 143(704):1459-1470. doi:  10.1002/qj.2017.143.issue-704
    [84]
    Taguchi M.Predictability of major stratospheric sudden warmings:Analysis results from JMA operational 1-month ensemble predictions from 2001/02 to 2012/13.J Atmos Sci, 2015, 73(2):789-806. http://cn.bing.com/academic/profile?id=1ceeadd6f7cf8fbbb6fe0e141fd523ec&encoded=0&v=paper_preview&mkt=zh-cn
    [85]
    Marshall A G, Scaife A A.Improved predictability of stratospheric sudden warming in an atmospheric general circulation model with enhanced stratospheric resolution.J Geophys Res, 2010, 115:D16114. doi:  10.1029/2009JD012643
    [86]
    Tripathi O P, Charlton-Perez A, Sigmond M, et al.Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions.Environ Res Lett, 2015, 10:104007. doi:  10.1088/1748-9326/10/10/104007
    [87]
    Tripathi O P, Baldwin M, Charlton-Perez A, et al.Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems.Mon Wea Rev, 2016, 144(5):1935-1960. doi:  10.1175/MWR-D-15-0010.1
    [88]
    Karpechko A Y.Predictability of sudden stratospheric warmings in the ECMWF extended-range forecast system.Mon Wea Rev, 2018, 146(4):1063-1075. doi:  10.1175/MWR-D-17-0317.1
    [89]
    章大全, 宋文玲.2017/2018年冬季北半球大气环流特征及对我国天气气候的影响.气象, 2018, 44(7):969-976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201807013
    [90]
    Vinnikov K Y, Yeserkepova I B.Soil moisture:Empirical data and model results.J Climate, 1991, 4(1):66-79. doi:  10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2
    [91]
    Entin J K, Robock A, Vinnikov K Y, et al.Temporal and spatial scales of observed soil moisture variations in the extratropics.J Geophys Res, 2000, 105(D9):11865-11877. doi:  10.1029/2000JD900051
    [92]
    Koster R D, Suarez M J, Liu P, et al.Realistic initialization of land surface states:Impacts of subseasonal forecast skill.J Hydrometeor, 2004, 5(6):1049-1063. doi:  10.1175/JHM-387.1
    [93]
    Koster R D, Mahanama S P P, Yamada T J, et al.The second phase of the Global Land-Atmosphere Coupling Experiment:Soil moisture contribution to subseasonal forecast skill.J Hydrometeor, 2011, 12(5):805-822. doi:  10.1175/2011JHM1365.1
    [94]
    Seneviratne S I, Corti T, Davin E L, et al.Investigating soil moisture-climate interactions in a changing climate:A review.Earth-Sci Rev, 2010, 99(3-4):125-161. doi:  10.1016/j.earscirev.2010.02.004
    [95]
    Seo E, Lee M, Jeong J, et al.Impact of soil moisture initialization on boreal summer subseasonal forecasts:Mid-latitude surface air temperature and heat wave events.Climate Dyn, 2018, 52(3-4):1695-1709. http://cn.bing.com/academic/profile?id=488f315128172c196d172f4f87663050&encoded=0&v=paper_preview&mkt=zh-cn
    [96]
    Fischer E M, Seneviratne S I, Vidale P L, et al.Soil moisture-atmosphere interactions during 2003 European summer heat wave.J Climate, 2007, 20(20):5081-5099. doi:  10.1175/JCLI4288.1
    [97]
    Yang F, Kumar A, Wang H M, et al.Snow-albedo feedback and seasonal climate variability over North America.J Climate, 2001, 14(22):4245-4248. doi:  10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2
    [98]
    Jeong J H, Linderholm H W, Woo S H, et al.Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season.J Climate, 2013, 26(6):1956-1972. doi:  10.1175/JCLI-D-12-00159.1
    [99]
    Orsolini Y J, Senan R, Balsamo G, et al.Impact of snow initialization on sub-seasonal forecasts.Climate Dyn, 2013, 41(7-8):1969-1982. doi:  10.1007/s00382-013-1782-0
    [100]
    Orsolini Y J, Senan R, Vitart F, et al.Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010.Climate Dyn, 2016, 47(3-4):1325-1334. doi:  10.1007/s00382-015-2903-8
    [101]
    段安民, 肖志祥, 吴国雄, 等.青藏高原冬春积雪影响亚洲夏季风的研究进展.气候与环境科学, 2014, 7(3):94-101. http://d.old.wanfangdata.com.cn/Periodical/hnqx201403015
    [102]
    韩世茹, 郑志海, 周须文, 等.青藏高原积雪深度对延伸期预报技巧的影响.大气科学, 2019, 43(1):119-130. http://d.old.wanfangdata.com.cn/Periodical/daqikx201901012
    [103]
    Frederiksen J S, Lin H.Tropical-extratropical interactions of intraseasonal oscillations.J Atmos Sci, 2013, 70(10):3180-3197. doi:  10.1175/JAS-D-12-0302.1
    [104]
    Wang J, Wen Z, Wu R, et al.The mechanism of growth of the low-frequency East Asia-Pacific teleconnection and the triggering role of tropical intraseasonal oscillation.Climate Dyn, 2016, 46(11-12):3965-3977. doi:  10.1007/s00382-015-2815-7
    [105]
    Stan C, Straus D M, Frederiksen J S, et al.Review of tropical-extratropical teleconnections on intraseasonal time scales.Rev Geophys, 2017, 55(4):902-937. doi:  10.1002/rog.v55.4
    [106]
    Miyakoda K, Gordon T, Carerly R, et al.Simulation of a blocking event in January 1977.Mon Wea Rev, 1983, 111(4):846-869. doi:  10.1175/1520-0493(1983)111<0846:SOABEI>2.0.CO;2
    [107]
    Tracton M S, Mo K, Chen W, et al.Dynamical extended range forecasting (DERF) at the National Meteorological Center.Mon Wea Rev, 1989, 117(7):1604-1635. doi:  10.1175/1520-0493(1989)117<1604:DERFAT>2.0.CO;2
    [108]
    Deque M, Royer J F.The skill of extended-range extratropical winter dynamical forecasts.J Climate, 1992, 5(11):1346-1356. doi:  10.1175/1520-0442(1992)005<1346:TSOERE>2.0.CO;2
    [109]
    Palmer T N.Extended-range atmospheric prediction and the Lorenz model.Bull Amer Meteor Soc, 1993, 74(1):49-65. doi:  10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2
    [110]
    Boer G J.Dynamical Extended Range Forecasting at the Canadian Climate Centre.Reading: ECMWF, 1988: 135-152.
    [111]
    Yamada S, Maeda S, Nakamura K.Time Lagged Ensemble Forecast Experiments in the Extended Range the JMA Global Prediction Model//WMO Training Workshop.Diagnosis and Prediction of Monthly and Seasonal Atmospheric Variations.Geneva: WMO, 1991: 231-234.
    [112]
    Owen J A, Palmer T N.The Impact of El Niño on an ensemble of extended-range forecasts.Mon Wea Rev, 1987, 115(9):2103-2117. doi:  10.1175/1520-0493(1987)115<2103:TIOENO>2.0.CO;2
    [113]
    Mo K C, Kalnay E.Impact of sea surface temperature anomalies on the skill of monthly forecasts.Mon Wea Rev, 1991, 119(12):2771-2793. doi:  10.1175/1520-0493(1991)119<2771:IOSSTA>2.0.CO;2
    [114]
    骆美霞, 张道民.实时海温对动力延伸(月)预报影响的数值试验研究.应用气象学报, 2002, 13(6):727-733. doi:  10.3969/j.issn.1001-7313.2002.06.011
    [115]
    王秋良, 张立凤, 关吉平.不同海温强迫的月动力延伸集合预报试验.气候与环境研究, 2013, 18(4):517-523. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj201304010
    [116]
    Vitart F.Evolution of ECMWF sub-seasonal forecast skill scores.Q J Roy Meteor Soc, 2014, 140(683):1889-1899. doi:  10.1002/qj.2014.140.issue-683
    [117]
    吴统文, 宋连春, 刘向文, 等.国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 2013, 24(5):533-543. doi:  10.3969/j.issn.1001-7313.2013.05.003
    [118]
    Lorenz E N.Climate Predictability//The Physical Basis of Climate and Climate Modeling.GARP Publication Series.Geneva: WMO, 1975: 133-136.
    [119]
    Palmer T N, Anderson D L T.The prospects for seasonal forecasting-A review paper.Q J Roy Meteor Soc, 1994, 120(518):755-793. http://cn.bing.com/academic/profile?id=8a4cf83f2d9e3bedfd5f9a2e15f9083b&encoded=0&v=paper_preview&mkt=zh-cn
    [120]
    Mason S, Goddard L, Graham N E, et al.The IRI seasonal climate prediction system and the 1997/98 El Niño event.Bull Amer Meteor Soc, 1999, 80(9):1853-1873. doi:  10.1175/1520-0477(1999)080<1853:TISCPS>2.0.CO;2
    [121]
    Li S, Robertson A W.Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems.Mon Wea Rev, 2015, 143(7):2871-2889. doi:  10.1175/MWR-D-14-00277.1
    [122]
    Liu R F, Wang W.Multi-week prediction of South-East Asia rainfall variability during boreal summer in CFSv2.Climate Dyn, 2015, 45(1-2):493-509. doi:  10.1007/s00382-014-2401-4
    [123]
    DelSole T, Trenary L.Predictability of week 3-4 average temperature and precipitation over the Contiguous United States.J Climate, 2017, 30(10):3499-3512. doi:  10.1175/JCLI-D-16-0567.1
    [124]
    DelSole T, Tippett M K.Laplacian eigenfunctions for climate analysis.J Climate, 2015, 28(18):7420-7436. doi:  10.1175/JCLI-D-15-0049.1
    [125]
    Liang P, Lin H.Sub-seasonal prediction over East Asia during boreal summer using the ECCC monthly forecasting system.Climate Dyn, 2018, 50(3-4):1007-1022. doi:  10.1007/s00382-017-3658-1
    [126]
    Pegion K, Sardeshmukh P D.Prospects for improving subseasonal predictions.Mon Wea Rev, 2011, 139(11):3648-3666. doi:  10.1175/MWR-D-11-00004.1
    [127]
    Wang W, Hung M P, Weaver S J, et al.MJO prediction in the NCEP Climate Forecast System version 2.Climate Dyn, 2014, 42(9-10):2509-2520. doi:  10.1007/s00382-013-1806-9
    [128]
    何慧根, 李巧萍, 吴统文, 等.月动力延伸预测模式业务系统DERF2.0对中国气温和降水的预测性能评估.大气科学, 2014, 38(5):950-964. http://d.old.wanfangdata.com.cn/Periodical/daqikx201405011
    [129]
    白慧, 黄晨然, 李忠燕.DERF2.0模式对贵州延伸期、月预测质量对比分析.中低纬山地气象, 2018, 42(5):1-5. doi:  10.3969/j.issn.1003-6598.2018.05.001
    [130]
    陈丽娟, 李维京, 张培群, 等.降尺度技术在月降水预报中的应用.应用气象学报, 2003, 14(6):648-655. doi:  10.3969/j.issn.1001-7313.2003.06.002
    [131]
    李维京, 陈丽娟.动力延伸预报产品释用方法的研究.气象学报, 1999, 57(3):338-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900533794
    [132]
    任宏利, 张培群, 李维京, 等.提高月预报业务水平的动力相似集合方法.气象学报, 2014, 72(4):723-730. http://d.old.wanfangdata.com.cn/Periodical/qxxb201404007
    [133]
    李维京, 郑志海, 孙丞虎.近年来我国短期气候预测中动力相似预测方法研究与应用进展.大气科学, 2013, 37(2):341-350. http://d.old.wanfangdata.com.cn/Periodical/daqikx201302012
    [134]
    丑纪范.天气和气候的可预报性.气象科技进展, 2011, 1(2):11-14. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201102003
    [135]
    王阔, 封国林, 孙树鹏, 等.基于2008年1月南方低温雨雪冰冻事件10~30天延伸期稳定分量的研究.物理学报, 2012, 61(10):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201210075
    [136]
    王启光, 丑纪范, 封国林.数值模式延伸期可预报分量提取及预报技术研究.中国科学(地球科学), 2014, 44(2):343-354. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012371481.htm
    [137]
    Zheng Z, Hu Z, L Heureux M.Predictable components of ENSO evolution in real-time multi-model predictions.Scientific Reports, 2016, 6:35909. doi:  10.1038/srep35909
    [138]
    郑志海, 黄建平, 封国林, 等.延伸期可预报分量的预报方案和策略.中国科学(地球科学), 2013, 43(4):594-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201304009
    [139]
    章大全, 陈丽娟.基于DERF2.0的月平均温度概率订正预报.大气科学, 2016, 40(5):1022-1032. http://d.old.wanfangdata.com.cn/Periodical/daqikx201605011
    [140]
    金荣花, 马杰, 毕宝贵.10~30 d延伸期预报研究进展的业务现状.沙漠与绿洲气象, 2010, 4(2):1-5. doi:  10.3969/j.issn.1002-0799.2010.02.001
    [141]
    何金海, 梁萍, 孙国武.延伸期预报的思考及其应用研究进展.气象科技进展, 2013, 3(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201301010
    [142]
    梁萍, 何金海, 穆海振.MJO在延伸期预报中的应用进展.气象科技进展, 2013, 3(1):31-38. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201301013
    [143]
    孙国武, 李震坤, 信飞, 等.延伸期天气过程预报的一种新方法——低频天气图.大气科学, 2013, 37(4):945-954. http://d.old.wanfangdata.com.cn/Conference/8145017
    [144]
    陈伯民, 梁萍, 信飞, 等.延伸期过程预报预测技术及应用.气象科技进展, 2017, 7(6):82-91. doi:  10.3969/j.issn.2095-1973.2017.06.010
    [145]
    高建芸, 陈彩珠, 周信禹, 等.2010年福建前汛期典型持续性暴雨过程的低频特征分析.气象科技进展, 2013, 3(1):39-45. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201301014
    [146]
    林纾, 惠志红, 郭俊琴, 等.150天韵律方法月内过程预测系统简介及应用检验.气象科技进展, 2013, 3(5):48-51. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201305011
    [147]
    钱维宏.瞬变涡扰动法在极端天气事件预报中的应用.气象科技进展, 2012, 2(5):44-48. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201205006
    [148]
    Hsu P-C, Li T, You L, et al.A spatial-temporal projection method for 10-30-day forecast of heavy rainfall in Southern China.Climate Dyn, 2015, 44(5-6):1227-1244. doi:  10.1007/s00382-014-2215-4
    [149]
    Zhu Z, Li T, Hsu P-C, et al.A spatial-temporal projection model for extended-range forecast in the tropics.Climate Dyn, 2015, 45(3-4):1085-1098. doi:  10.1007/s00382-014-2353-8
    [150]
    Zhu Z, Li T.Empirical prediction of the onset dates of South China Sea summer monsoon.Climate Dyn, 2017, 48(5-6):1633-1645. doi:  10.1007/s00382-016-3164-x
    [151]
    Zhu Z, Li T, Bai L, et al.Extended-range forecast for the temporal distribution of clustering tropical cyclogenesis over the western North Pacific.Theor Appl Climatol, 2017, 130(3-4):865-877. doi:  10.1007/s00704-016-1925-4
    [152]
    陈丽娟, 陈伯民, 李维京, 等.T63模式月动力延伸预报高度场的改进实验.应用气象学报, 2005, 16(增刊Ⅰ):92-96. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2005z1012
    [153]
    杨秋明.基于20~30 d振荡的长江下游地区夏季低频降水延伸期预报方法研究.气象学报, 2014, 72(3):494-507. http://d.old.wanfangdata.com.cn/Periodical/qxxb201403006
    [154]
    杨秋明.长江下游夏季低频温度和高温天气的延伸期预报研究.地球科学进展, 2018, 33(4):385-395. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201804006
    [155]
    梁萍, 丁一汇.基于季节内振荡的延伸预报试验.大气科学, 2012, 36(1):102-116. doi:  10.3878/j.issn.1006-9895.2012.01.09
    [156]
    杜良敏, 柯宗建.一种适用于延伸期过程事件预报的检验方法.应用气象学报, 2013, 24(6):686-694. doi:  10.3969/j.issn.1001-7313.2013.06.005
  • 加载中
  • -->

Catalog

    Figures(2)

    Article views (5671) PDF downloads(177) Cited by()
    • Received : 2019-02-18
    • Accepted : 2019-04-26
    • Published : 2019-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint