Citation: | Chang Wanting, Gao Wenhua, Duan Yihong, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. DOI: 10.11898/1001-7313.20190405. |
[1] |
Tao W K, Simpson J, Sui C H, et al.Heating, moisture, and water budgets of tropical and midlatitude squall lines:Comparisons and sensitivity to long wave radiation.J Atmos Sci, 1993, 50(5):673-690. doi: 10.1175/1520-0469(1993)050<0673:HMAWBO>2.0.CO;2
|
[2] |
Ramanathan V, Crutzen P J, Kiehl J T, et al.Aerosols, climate, and the hydrological cycle.Science, 2001, 294(5549):2119-2124. doi: 10.1126/science.1064034
|
[3] |
McCumber M, Tao W, Simpson J, et al.Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection.J Appl Meteor, 1991, 30:985-1004. doi: 10.1175/1520-0450-30.7.985
|
[4] |
Li X, Pu Z.Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations.Mon Wea Rev, 2008, 136:4819-4838. doi: 10.1175/2008MWR2366.1
|
[5] |
Wang M, Zhao K, Xue M, et al.Precipitation microphysics characteristics of a typhoon Matmo (2014) rain band after landfall over eastern China based on polarimetric radar observations.J Geophys Res Atmos, 2016, 121(20):12415-12433. doi: 10.1002/2016JD025307
|
[6] |
杨挺, 端义宏, 徐晶, 等.城市效应对登陆热带气旋妮妲降水影响的模拟.应用气象学报, 2018, 29(4):410-422. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180403&flag=1
|
[7] |
冯佳宁, 端义宏, 徐晶, 等.雷达资料同化对2015年台风彩虹数值模拟改进.应用气象学报, 2017, 28(4):399-413. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170402&flag=1
|
[8] |
刘还珠, 陈德辉, 滕俏彬.不同物理过程参数化对模式台风的影响及其动力结构的研究.应用气象学报, 1998, 9(2):141-150. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980221&flag=1
|
[9] |
孙晶, 楼小凤, 胡志晋, 等.CAMS复杂云微物理方案与GRAPES模式耦合的数值试验.应用气象学报, 2008, 19(3):315-325. doi: 10.3969/j.issn.1001-7313.2008.03.007
|
[10] |
屈右铭, 蔡荣辉, 朱立娟, 等.云分析系统在台风莫拉菲数值模拟中的应用.应用气象学报, 2012, 23(5):551-561. doi: 10.3969/j.issn.1001-7313.2012.05.005
|
[11] |
Hong S Y, Lim J O.The WRF single-moment 6-class microphysics scheme (WSM6).J Korean Meteor Soc, 2006, 42(2):129-151. http://cn.bing.com/academic/profile?id=88b7d963485cf080fae5c40fe7cbca20&encoded=0&v=paper_preview&mkt=zh-cn
|
[12] |
Hong S Y, Lim K S, Kim J H, et al.Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations:Ice-phase, microphysics versus sedimentation effects.J Appl Meteorol Climatol, 2009, 48(1):61-76. doi: 10.1175/2008JAMC1960.1
|
[13] |
Morrison H, Curry J A, Khvorostyanov V I.A new double-moment microphysics parameterization for application in cloud and climate models.Part Ⅰ:Description.J Atmos Sci, 2005, 62:1665-1677. doi: 10.1175/JAS3446.1
|
[14] |
Brown P R A, Swann H A.Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data.Q J R Meteorol Soc, 1997, 123:2245-2275. doi: 10.1002/qj.v123:544
|
[15] |
Lord S J, Willoughby H E, Piotrowicz J M.Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model.J Atmos Sci, 1984, 41:2836-2848. doi: 10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2
|
[16] |
Yang M L, Ching L.A modeling study of Typhoon Toraji (2001):Physical parameterization sensitivity and topographic effect.Terr Atmos and Oceanic Sci, 2005, 16(1):37. http://cn.bing.com/academic/profile?id=fa73e3d4ec569d3fe223ea75b03a32b7&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
Tao W K, Shi J J, Chen S S, et al.The impact of microphysical schemes on hurricane intensity and track.Asia-Pacific J Atmos Sci, 2011, 47(1):1-16. http://cn.bing.com/academic/profile?id=8ae922a3de27fd194bafb2d3a796aa26&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
Wang Y Q.Recent research progress on tropical cyclone structure and intensity.Tropical Cyclone Research and Review, 2012, 1:254-275. http://cn.bing.com/academic/profile?id=5f58930ff86e6f4954c211a46acc9423&encoded=0&v=paper_preview&mkt=zh-cn
|
[19] |
Wang Y Q.An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model:TCM3.Part Ⅱ:Model refinements and sensitivity to cloud microphysics parameterization.Mon Wea Rev, 2002, 30:3022-3036. http://cn.bing.com/academic/profile?id=d73955c543c81b32c87589568cda91ff&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Fovell R G, Corbosiero K L, Kuo H C.Cloud microphysics impact on hurricane track as revealed in idealized experiments.J Atmos Sci, 2009, 66(6):1764-1778. doi: 10.1175/2008JAS2874.1
|
[21] |
花丛, 刘奇俊.云微物理过程影响登陆台风结构及降水的数值试验.热带气象学报, 2013, 29(6):924-934. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201306006.htm
|
[22] |
Deng L, Gao W H, Duan Y H, et al.Microphysical properties of rainwater in Typhoon Usagi (2013):A numerical modeling study.Adv Atmos Sci, 2019, 10.1007/s00376-019-8170-6. http://cn.bing.com/academic/profile?id=95751ae19db15ec4c4c216fa9cb15660&encoded=0&v=paper_preview&mkt=zh-cn
|
[23] |
胡志晋, 楼小凤, 包绍武, 等.一个简化的混合相云降水显式方案.应用气象学报, 1998, 9(3):257-264. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980338&flag=1
|
[24] |
胡志晋, 严采蘩.层状云微物理过程的数值模拟(一)——微物理模式.气象科学研究院院刊, 1986(1):37-52. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013186028.htm
|
[25] |
胡志晋, 何观芳.积雨云微物理过程的数值模拟(一)——微物理模式.气象学报, 1987, 45(4):467-484. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198704011.htm
|
[26] |
Gao W H, Zhao F S, Hu Z J, et al.A two-moment bulk microphysics scheme coupled with a mesoscale model WRF:Model description and first results.Adv Atmos Sci, 2011, 28:1184-1200. doi: 10.1007/s00376-010-0087-z
|
[27] |
楼小凤, 胡志晋, 王鹏云, 等.中尺度模式云降水物理方案介绍.应用气象学报, 2003, 14(增刊Ⅰ):49-59. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1007
|
[28] |
李淑日, 胡志晋, 王广河.CAMS三维对流云催化模式的改进及个例模拟.应用气象学报, 2003, 14(增刊Ⅰ):78-91. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1010
|
[29] |
史月琴, 楼小凤, 邓雪娇, 等.华南冷锋云系的中尺度和微物理特征模拟分析.大气科学, 2008, 32(5):1019-1036. doi: 10.3878/j.issn.1006-9895.2008.05.03
|
[30] |
Gao W H, Sui C H, Wang T C, et al.An evaluation and improvement of microphysical parameterization from a two-moment cloud microphysics scheme and the southwest monsoon experiment (SoWMEX)/terrain-influenced monsoon rainfall experiment (TiMREX) observations.J Geophys Res, 2011, 116(D19):101. http://cn.bing.com/academic/profile?id=160d2c1c55428eca90ca49943315658e&encoded=0&v=paper_preview&mkt=zh-cn
|
[31] |
Gao W H, Sui C H, Fan J, et al.A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations.J Geophys Res Atmos, 2016, 121:13735-13752. doi: 10.1002/2015JD024196
|
[32] |
Ying M, Zhang W, Yu H, et al.An overview of the China Meteorological Administration tropical cyclone database.J Atmos Ocean Technol, 2014, 31(2):287-301. doi: 10.1175/JTECH-D-12-00119.1
|
[33] |
Awaka J.Early Results on Rain Type Classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar.Proc URSI Commission F Triennial Open Symposium Aveiro Portugal, 1998:143-146.
|
[34] |
Skamarock W C, Klemp J B.A time-split nonhydrostatic atmospheric model for weather research and forecasting applications.J Comput Phys, 2008, 227(7):3465-3485. doi: 10.1016/j.jcp.2007.01.037
|
[35] |
Locatelli J D, Hobbs P V.Fall speeds and masses of solid precipitation particles.J Geophy Res, 1974, 79(15):2185-2197. doi: 10.1029/JC079i015p02185
|
[36] |
Mason B J.云物理学.中国科学院大气物理研究所, 译.北京: 科学出版社, 1979.
|
[37] |
Zeng S, Riedi J, Trepte C R, et al.Study of global cloud droplet number concentration with A-Train satellites.Atmos Chem and Phys, 2014, 14:7125-7134. doi: 10.5194/acp-14-7125-2014
|
[38] |
陈渭民.卫星气象学.北京:气象出版社, 2005.
|
[39] |
楼小凤.MM5模式的新显示云物理方案的建立和耦合及原微物理方案的对比分析.北京: 北京大学, 2002. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y469445
|
[40] |
Holliday C R, Thompson A H.Climatological characteristics of rapidly intensifying typhoons.Mon Wea Rev, 1979, 107(8):1022-1034. doi: 10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2
|
[41] |
Kaplan J, Demaria M.Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin.Wea Forecasting, 2003, 18(6):1093-1108. doi: 10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
|
[42] |
Masunaga H, Matsui T, Tao W K, et al.Satellite data simulator unit:A multisensor, multispectral satellite simulator package.Bull Amer Meteor Soc, 2010, 91:1625-1632. doi: 10.1175/2010BAMS2809.1
|
[43] |
Franklin C N, Holland G J, May P T.Sensitivity of tropical cyclone rainbands to ice-phase microphysics.Mon Wea Rev, 2005, 133:2473-2493. doi: 10.1175/MWR2989.1
|
[44] |
郭静超.基于WRF模式的暖云降水潜热物理反演算法研究.合肥: 中国科学技术大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2925918
|
[45] |
姚小娟, 黎伟标, 陈淑敏.利用TMI反演的水汽凝结物对热带气旋潜热结构分布的探索研究.大气科学, 2014, 38(5):909-923. http://d.old.wanfangdata.com.cn/Periodical/daqikx201405008
|
[46] |
Miyamoto Y, Takemi T.A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones.J Atmos Sci, 2013, 70(1):112-129. doi: 10.1175/JAS-D-11-0285.1
|
[47] |
Bryan G H, Rotunno R.The maximum intensity of tropical cyclones in axisymmetric numerical model simulations.Mon Wea Rev, 2009, 137(6):1770-1789. doi: 10.1175/2008MWR2709.1
|
[48] |
Xu J, Wang Y.Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux.J Atmos Sci, 2010, 67(6):1831-1852. doi: 10.1175/2010JAS3387.1
|
[49] |
Xu J, Wang Y.Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size.Mon Wea Rev, 2010, 138(11):4135-4157. doi: 10.1175/2010MWR3335.1
|
[50] |
王慧.台风Megi(2010)强度和结构变化的数值研究.南京: 南京信息工程大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10300-1013340783.htm
|
[51] |
Powell M D.Boundary layer structure and dynamics in outer hurricane rainbands, Part Ⅱ:Downdraft modification and mixed layer recovery.Mon Wea Rev, 1990, 118:918-938. doi: 10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2
|