Zhang Xiaohui, Zhang Lifeng, Zhou Haishen, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. DOI:  10.11898/1001-7313.20190406.
Citation: Zhang Xiaohui, Zhang Lifeng, Zhou Haishen, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. DOI:  10.11898/1001-7313.20190406.

Interaction and Influence of Binary Typhoons

DOI: 10.11898/1001-7313.20190406
  • Received Date: 2018-11-01
  • Rev Recd Date: 2019-03-01
  • Publish Date: 2019-07-31
  • The non-static mesoscale numerical model WRF V3.3 is used to study the influence of the interaction between binary typhoons on their moving path, intensity and precipitation. Data of NCEP FNL are used as initial field and side boundary conditions, and satellite data of ATOVS such as AMSUA, AMSUB, HIRS (3/4) are assimilated. Simulation results of binary typhoons in control runs, which are based on hybrid ensemble three-dimensional variational data assimilation (Ens-3DVar) system, are very close to the real intensity, moving path and precipitation. Beyond that, 6 sensitive experiments based on control runs are designed. The 96-hour simulations are conducted after one of the binary typhoons (Fitows/Danas/Goni/Morakot) is removed from the initial field which adopts the first step of vortex reconstruction technology in WRF ARW in the sensitive experiments (C1-RMF/C1-RMD/C2-RMG/C2-RMM). Experiment C2-WEM (C2-STM) is conducted by weakening or enhancing one of the binary typhoons in order to study effects of typhoon Morakot on typhoon Goni, but the typhoon radius is unchanged. Results of sensitive experiments and control runs are further compared and analyzed.In Case 1, the role of typhoon Danas leads typhoon Fitow to move southward and slower. The role of typhoon Fitow causes typhoon Danas to move northward but has little effects on the shifting speed. The strength of binary typhoons Fitow and Danas have been changed by the interaction between them. Specifically, the interaction of binary typhoons makes the intensity of typhoon Fitow and typhoon Danas stronger in the strong stage and weaker in the dying stage of typhoon Fitow. From 6 October to 9 October in 2013, the heavy precipitation in East China is mainly affected by typhoon Fitow. Affected by typhoon Danas, the precipitation intensity brought by typhoon Fitow is enhanced, and the heavy precipitation center moves southward.In Case 2, the interaction of binary typhoons makes typhoon Goni move southward and faster, but typhoon Goni has little influence on the movement and speed of typhoon Morakot. The winding path and direction change of typhoon Goni are all associated with typhoon Morakot. The bending extent of typhoon Goni is positively correlated with the strength of typhoon Morakot. Main causes are the interaction and transportation mechanism of vorticity, water vapor flux between binary typhoons.
  • Fig. 1  Tracks of typhoon Fitow(a) and typhoon Danas(b) followed every 6 hours in different experiments in Case 1

    Fig. 2  Minimum pressure(a) and maximum wind speed(b) of typhoon Fitow, minimum pressure(c) and maximum wind speed(d) of typhoon Danas in Case 1

    Fig. 3  Accumulated precipitation in C1-CTL(a), C1-RMD(b) and C1-RMF(c) from 0000 UTC 6 Oct to 0000 UTC 7 Oct in 2013 in Case 1

    Fig. 4  Tracks of typhoon Goni(a) and typhoon Morakot(b) followed every 6 hours in different experiments in Case 2

    Fig. 5  Tracks of typhoon Goni affected by typhoon Morakot with different intensity followed every 6 hours in Case 2

    Fig. 6  Minimum pressure(a) and maximum wind speed(b) of typhoon Goni after removal of typhoon Morakot, minimum pressure(c) and maximum wind speed(d) of typhoon Morakot after removal of typhoon Goni in Case 2

    Fig. 7  Minimum pressure(a) and maximum wind speed(b) of typhoon Goni with different intensities of typhoon Morakot in Case 2

    Fig. 8  Accumulated precipitation in C2-CTL(a), C2-RMM(b) and C2-RMG(c) from 0000 UTC 4 Aug to 0000 UTC 5 Aug in 2009 in Case 2

    Table  1  Experiment design for Case 1

    序号 试验名称 试验方案 试验目的
    1 C1-CTL 基于Ens-3DVar同化系统的同化模拟 与敏感性试验对比
    2 C1-RMF 方案同C1-CTL,在C1-CTL初始场移除台风菲特 揭示台风菲特对台风丹娜丝的影响
    3 C1-RMD 方案同C1-CTL,在C1-CTL初始场移除台风丹娜丝 揭示台风丹娜丝对台风菲特的影响
    DownLoad: Download CSV

    Table  2  Experiment design for Case 2

    序号 试验名称 试验方案 试验目的
    1 C2-CTL 基于Ens-3DVar同化系统的同化模拟 与敏感性试验对比
    2 C2-RMG 方案同C2-CTL,在C2-CTL初始场移除台风天鹅 揭示台风天鹅对台风莫拉克的影响
    3 C2-RMM 方案同C2-CTL,在C2-CTL初始场移除台风莫拉克 揭示台风莫拉克对台风天鹅的影响
    4 C2-WEM 方案同C2-CTL,在C2-CTL初始场移除台风莫拉克,并在原中心位置加入一个比原台风强度更弱的涡旋 揭示台风莫拉克强度对台风天鹅的影响
    5 C2-STM 方案同C2-WEM,仅在台风中心位置加入的涡旋比原台风强度更强 揭示台风莫拉克强度对台风天鹅的影响
    DownLoad: Download CSV
  • [1]
    Hoover E W.Relative motion of hurricane Pairs.Mon Wea Rev, 1961, 89(7):251-255. doi:  10.1175/1520-0493(1961)089<0251:RMOHP>2.0.CO;2
    [2]
    Brand S.Interaction of binary tropical cyclones of the Western North Pacific Ocean.J Appl Meteor, 1970, 9(3):433-441. doi:  10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2
    [3]
    王作述, 傅秀琴.双台风相互作用及对它们移动的影响.大气科学, 1983, 7(3):269-276. doi:  10.3878/j.issn.1006-9895.1983.03.04
    [4]
    阮均石, 余学超, 吴中仁.关于双台风相互作用的初步分析.南京气象学院学报, 1985, 3(3):334-339. http://www.cnki.com.cn/Article/CJFD1985-NJQX198503010.htm
    [5]
    王玉清, 朱永禔.双热带气旋相互作用的机制分析及数值研究Ⅱ:数值模拟.大气科学, 1992, 16(6):659-668. doi:  10.3878/j.issn.1006-9895.1992.06.03
    [6]
    吴限, 费建芳, 黄小刚, 等.西北太平洋双热带气旋相互作用统计分类及其特征分析.热带气象学报, 2011, 27(4):455-464. doi:  10.3969/j.issn.1004-4965.2011.04.003
    [7]
    顾茜, 丁雪霖, 陈永平.2012年西北太平洋多台站台风预报误差比较分析.河海大学学报(自然科学版), 2013, 41(6):531-535. doi:  10.3876/j.issn.1000-1980.2013.06.011
    [8]
    闫敬华, 丁伟钰, 徐建平."非bogus初值"热带气旋数值预报及其性能.应用气象学报, 2004, 15(5):513-522. doi:  10.3969/j.issn.1001-7313.2004.05.001
    [9]
    麻素红, 张进, 沈学顺, 等.2016年GRAPES_TYM改进及对台风预报影响.应用气象学报, 2018, 29(3):257-269. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180301&flag=1
    [10]
    Wang Y Q.On the bogussing of tropical cyclones in numerical models:The influence of vertical structure.Meteor Atmos Phys, 1998, 65(1):153-170. http://cn.bing.com/academic/profile?id=85324fc6499a0c4b8eacd6aefa55f6b8&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    熊春晖, 张立凤, 关吉平, 等.集合-变分数据同化方法的发展与应用.地球科学进展, 2013, 28(6):648-656. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201306003
    [12]
    梁晓, 郑小谷, 戴永久, 等.EnKF中误差协方差优化方法及在资料同化中应用.应用气象学报, 2014, 25(4):397-405. doi:  10.3969/j.issn.1001-7313.2014.04.002
    [13]
    屈右铭, 蔡荣辉, 朱立娟, 等.云分析系统在台风莫拉菲数值模拟中的应用.应用气象学报, 2012, 23(5):551-561. doi:  10.3969/j.issn.1001-7313.2012.05.005
    [14]
    冯佳宁, 端义宏, 徐晶, 等.雷达资料同化对2015年台风彩虹数值模拟改进.应用气象学报, 2017, 28(4):399-413. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170402&flag=1
    [15]
    Xiong Chun-hui, Zhang Li-feng, Guan Ji-ping, et al.Analysis and numerical study of a hybrid BGM-3DVAR data assimilation scheme using satellite radiance data for heavy rain forecasts.J Hydrodyn, 2013, 25(3):430-439. doi:  10.1016/S1001-6058(11)60382-0
    [16]
    张晓慧, 张立凤, 熊春晖, 等.基于集合变分混合同化方法的双台风数值模拟.热带气象学报, 2015, 31(4):505-516. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201504008
    [17]
    张容焱, 张秀芝, 杨校生, 等.台风莫拉克(0908)影响期间近地层风特性.应用气象学报, 2012, 23(2):184-194. doi:  10.3969/j.issn.1001-7313.2012.02.007
    [18]
    徐洪雄, 徐祥德, 陈斌, 等.双台风生消过程涡旋能量、水汽输送相互影响的三维物理图像.气象学报, 2013, 71(5):825-838. http://d.old.wanfangdata.com.cn/Periodical/qxxb201305003
    [19]
    李波, 费建芳, 黄小刚, 等.0908号台风"莫拉克"异常路径的诊断分析与数值模拟.海洋预报, 2011, 28(2):18-22. doi:  10.3969/j.issn.1003-0239.2011.02.003
    [20]
    瞿安祥, 麻素红.非对称台风bogus方案设计和初步试验.应用气象学报, 2007, 18(3):380-387. doi:  10.3969/j.issn.1001-7313.2007.03.015
    [21]
    王诗文, 李健军.台风路径实时数值预报的初步试验.应用气象学报, 1994, 5(4):462-469. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940479&flag=1
    [22]
    Yoshio K, Robert E T, Morris A B.The GFDL hurricane prediction system and its performance in the 1995 hurricane season.Mon Wea Rev, 1998, 126:1306-1322. doi:  10.1175/1520-0493(1998)126<1306:TGHPSA>2.0.CO;2
    [23]
    Mino H, Nagata M.Outline of the New Typhoon Prediction Models at JMA.RSMC Tokyo-Typhoon Center Technical Review, No.4, 2001: 1-13.
    [24]
    Iwasaki T, Nakano H, Sugi M.The performance of typhoon track prediction modal with cumulus parameterization.J Meteor Soc Japan, 1987, 65:555-570. doi:  10.2151/jmsj1965.65.4_555
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (3034) PDF downloads(95) Cited by()
    • Received : 2018-11-01
    • Accepted : 2019-03-01
    • Published : 2019-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint