Zhang Fangjian, Xu Jing, Ma Jianzhong, et al. Impact of crop residue burning on PM2.5 inorganic components in Beijing-Tianjin-Hebei and surrounding areas. J Appl Meteor Sci, 2019, 30(4): 467-478. DOI:  10.11898/1001-7313.20190407.
Citation: Zhang Fangjian, Xu Jing, Ma Jianzhong, et al. Impact of crop residue burning on PM2.5 inorganic components in Beijing-Tianjin-Hebei and surrounding areas. J Appl Meteor Sci, 2019, 30(4): 467-478. DOI:  10.11898/1001-7313.20190407.

Impact of Crop Residue Burning on PM2.5 Inorganic Components in Beijing-Tianjin-Hebei and Surrounding Areas

DOI: 10.11898/1001-7313.20190407
  • Received Date: 2019-01-31
  • Rev Recd Date: 2019-04-28
  • Publish Date: 2019-07-31
  • Tremendous advances in atmospheric aerosol particle research have taken place in the last decade in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, is closely studied for its radiative, geochemical, and dynamic impacts. In addition to primary aerosols such as organic carbon (OC) and black carbon (BC), straw burning emits a large amount of gaseous precursor of aerosols. The transformation of these gaseous precursors to secondary aerosols is one of the important ways to the formation of heavy pollution episodes. Due to rapid economic growth and urbanization in China, crop residues are often burnt in a couple of days post harvests to prepare for planting the next season's crops. The North China Plain is a major agricultural base in China with straw burning widely in the field. Remote sensing data, ground monitoring data, meteorological data are used for analyzing effects on the haze pollution from autumn crop residue burning over Beijing-Tianjin-Hebei area. Results indicate that lots of heavy pollution processes are related to the pollutant transmission from the crop residue burning in surrounding regions. Emission characteristics of straw burning during the autumn harvest season (October 2014) are analyzed, using the regional chemical transport model WRF-Chem. Effects of straw burning on gaseous precursors of inorganic aerosols and their oxidation products as well as resulting changes of sulfate, nitrate and ammonium in PM2.5 are studied. It's found that during the autumn harvest season of 2014, the straw burning emissions in Henan and Shandong provinces tend to affect Beijing-Tianjin-Hebei urban areas under the influence of the southeast wind. A large number of VOCs emitted by straw burning lead to an increase in the concentration of major oxidants in the atmosphere which enhances the regional atmospheric oxidation capacity. When the straw burning plume carrying a large number of VOCs is mixed with the urban air mass mainly composed of fossil fuel emissions, the increase of atmospheric oxidation accelerates the oxidation process of gaseous precursors such as NO2 and SO2 emitted by anthropogenic sources and increases the conversion rate of sulfate and nitrate. Ammonia-rich state in Beijing-Tianjin-Hebei area are favorable for the formation of secondary inorganic aerosols, and straw burning intensifies the development of this process, and then results in a significant increase in the concentration of nitrate, sulfate and ammonium.
  • Fig. 1  Modeling area(the blue frame) and spatial distributions of MODIS fire counts(red dots)(a), regional distribution of monthly mean CO emission load for each grid of straw burning(b) in Oct 2014

    Fig. 2  Comparison between simulated and observed SNA

    Fig. 3  Regional distributions of monthly-averaged changes of surface RO2 and HO2 during the daytime(0700 BT-1800 BT) due to the straw burning in Oct 2014

    Fig. 4  Regional distributions of monthly-averaged changes of surface NOx and SO2 due to the straw burning in Oct 2014

    Fig. 5  Regional distributions of monthly-averaged changes of surface HNO3 and hexavalent sulfur due to the straw burning in Oct 2014

    Fig. 6  Regional distributions of monthly-averaged changes of surface SOR and NOR due to the straw burning in Oct 2014

    Fig. 7  Regional distributions of monthly-averaged SNA changes due to the straw burning in Oct 2014

    Table  1  Monthly emission statistics of major pollutants in the inner layer of the model

    污染物 人为排放 秸秆燃烧排放 秸秆燃烧排放占人为排放比例/%
    CO 4.9×106 t 1.2×105 t 2.4
    SO2 9.2×105 t 0.4×103 t 0.1
    NOx 1.03×106 t 6×103 t 0.6
    VOCs 8.1×109 mol 1.1×109 mol 14.0
    NH3 2.52×105 t 2.4×103 t 0.9
    OC 7.2×104 t 3.6×103 t 5.0
    BC 5.1×104 t 0.7×103 t 1.4
    PM2.5 3.6×105 t 6.3×103 t 1.8
    DownLoad: Download CSV

    Table  2  Comparison of hourly mean values of meteorological elements between simulation and observation

    统计量 温度 相对湿度 风速
    有效数据对 46573 46428 42157
    观测平均值 287.6 K 64.1% 2.0 m·s-1
    模拟平均值 287.2 K 67.7% 3.6 m·s-1
    平均偏差 -0.48 K 3.6% 1.5 m·s-1
    归一化平均偏差 -0.002 0.057 0.7
    相关系数 0.9 0.6 0.6
    DownLoad: Download CSV

    Table  3  Comparison of NO2, SO2, PM2.5 between simulation and observation

    统计量 NO2 SO2 PM2.5
    有效数据对 3244 3180 3180
    观测平均值/(μg·m-3) 46.01 34.2 75.36
    模拟平均值/(μg·m-3) 44.99 46.71 77.21
    平均偏差/(μg·m-3) -1.02 12.51 1.86
    归一化平均偏差 -0.07 0.37 0.02
    相关系数 0.61 0.35 0.70
    DownLoad: Download CSV
  • [1]
    Andreae M O, Merlet P.Emission of trace gases and aerosols from biomass burning.Global Biogeochemical Cycles, 2001, 15(4):955-966. doi:  10.1029/2000GB001382
    [2]
    Crutzen P J, Andreae M O.Biomass burning in the tropics:Impact on atmospheric chemistry and biogeochemical cycles.Science, 1990, 250:1669-1678. doi:  10.1126/science.250.4988.1669
    [3]
    Zhang Y L, Cao F.Is it time to tackle PM2.5 air pollutions in China from biomass-burning emissions?Environmental Pollution, 2015, 202:217-219. doi:  10.1016/j.envpol.2015.02.005
    [4]
    Evangelista H, Maldonado J, GodoiR H M, et al.Sources and transport of urban and biomass burning aerosol black carbon at the South-West Atlantic Coast.Journal of Atmospheric Chemistry, 2007, 56(3):225-238. doi:  10.1007/s10874-006-9052-8
    [5]
    Decarlo P F, Ulbrich I M, Crounse J, et al.Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO.Atmospheric Chemistry And Physics, 2010, 10(12):5257-5280. doi:  10.5194/acp-10-5257-2010
    [6]
    Song Y, Zhang Y H, Xie S D, et al.Source apportionment of PM2.5 in Beijing by positive matrix factorization.Atmos Environ, 2006, 40(8):1526-1537. doi:  10.1016/j.atmosenv.2005.10.039
    [7]
    Zhang R, Jing J, Tao J, et al.Chemical characterization and source apportionment of PM2.5 in Beijing:Seasonal perspective.Atmospheric Chemistry and Physics, 2013, 13(14):7053-7074. doi:  10.5194/acp-13-7053-2013
    [8]
    Sun Y, Jiang Q, Xu Y, et al.Aerosol characterization over the North China Plain:Haze life cycle and biomass burning impacts in summer.J Geophys Res Atmos, 2016, 121(5):2508-2521. doi:  10.1002/2015JD024261
    [9]
    Cheng Z, Wang S, Fu X, et al.Impact of biomass burning on haze pollution in the Yangtze River delta, China:A case study in summer 2011.Atmospheric Chemistry and Physics, 2014, 14(9):4573-4585. doi:  10.5194/acp-14-4573-2014
    [10]
    Yamaji K, Li J, Uno I, et al.Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006(MTX2006).Atmospheric Chemistry and Physics, 2010, 10(15):7353-7368. doi:  10.5194/acp-10-7353-2010
    [11]
    Buzcu B, Yue Z W, Fraser M P, et al.Secondary particle formation and evidence of heterogeneous chemistry during a wood smoke episode in Texas.J Geophys Res Atmos, 2006, 111(D10), DOI: 10.1029/2005jd006143.
    [12]
    Tian D, Hu Y T, Wang Y H, et al.Assessment of biomass burning emissions and their impacts on urban and regional PM2.5:A Georgia case study.Environ Sci Technol, 2009, 43(2):299-305. doi:  10.1021/es801827s
    [13]
    Zhou Y, Han Z, Liu R, et al.A Modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event.Aerosol & Air Quality Research, 2018, 18(7):1558-1572. https://www.researchgate.net/publication/322638993_A_Modeling_Study_of_the_Impact_of_Crop_Residue_Burning_on_PM25_Concentration_in_Beijing_and_Tianjin_during_a_Severe_Autumn_Haze_Event
    [14]
    徐晓斌.我国霾和光化学污染观测研究进展.应用气象学报, 2016, 27(5):604-619. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160509&flag=1
    [15]
    颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi:  10.3969/j.issn.1001-7313.2010.03.001
    [16]
    靳军莉, 颜鹏, 马志强, 等.北京及周边地区2013年1-3月PM2.5变化特征.应用气象学报, 2014, 25(6):690-700. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140605&flag=1
    [17]
    徐敬, 丁国安, 颜鹏, 等.北京地区PM2.5的成分特征及来源分析.应用气象学报, 2007, 18(5):645-654. doi:  10.3969/j.issn.1001-7313.2007.05.009
    [18]
    张小曳, 张养梅, 曹国良.北京PM1中的化学组成及其控制对策思考.应用气象学报, 2012, 23(3):257-264. doi:  10.3969/j.issn.1001-7313.2012.03.001
    [19]
    程兴宏, 徐祥德, 陈尊裕, 等.北京地区PM10浓度空间分布特征的综合变分分析.应用气象学报, 2007, 18(2):165-172. doi:  10.3969/j.issn.1001-7313.2007.02.005
    [20]
    徐敬, 张小玲, 蔡旭晖, 等.基于敏感源分析的动态大气污染排放方案模拟.应用气象学报, 2016, 27(6):654-665. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160602&flag=1
    [21]
    Chen D, Liu Z Q, Fast J, et al.Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014.Atmospheric Chemistry and Physics, 2016, 16(16):10707-10724. doi:  10.5194/acp-16-10707-2016
    [22]
    Long X, Tie X X, Cao J J, et al.Impact of crop field burning and mountains on heavy haze in the North China Plain:A case study.Atmospheric Chemistry and Physics, 2016, 16(15):9675-9691. doi:  10.5194/acp-16-9675-2016
    [23]
    方冬青, 魏永杰, 黄伟, 等.北京市2014年10月重霾污染特征及有机碳来源解析.环境科学研究, 2016, 29(1):12-19. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201601002
    [24]
    王占山, 李云婷, 孙峰, 等.2014年10月上旬北京市大气重污染分析.中国环境科学, 2015, 35(6):1654-1663. doi:  10.3969/j.issn.1000-6923.2015.06.007
    [25]
    何心河, 马建中, 徐敬, 等.2014年10月京津冀地区一次PM2.5污染过程的数值模拟.气象, 2016, 42(7):827-837. http://d.old.wanfangdata.com.cn/Periodical/qx201607006
    [26]
    徐敬, 马志强, 赵秀娟, 等.边界层方案对华北低层O3垂直分布模拟的影响.应用气象学报, 2015, 26(5):567-577. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150506&flag=1
    [27]
    Zaveri R A, Peters L K.A new lumped structure photochemical mechanism for large-scale applications.J Geophys Res Atmos, 1999, 104(D23):30387-30415. doi:  10.1029/1999JD900876
    [28]
    Zaveri R A, Easter R C, Fast J D, et al.Model for Simulating Aerosol Interactions and Chemistry (MOSAIC).J Geophys Res Atmos, 2008, 113(D13), DOI: 10.1029/2007jd008782.
    [29]
    Zhang Q, Streets D G, Carmichael G R, et al.Asian emissions in 2006 for the NASA INTEX-B mission.Atmospheric Chemistry and Physics, 2009, 9(14):5131-5153. doi:  10.5194/acp-9-5131-2009
    [30]
    Wiedinmyer C, Akagi S K, Yokelson R J, et al.The fire inventory from NCAR (FINN):A high resolution global model to estimate the emissions from open burning.Geoscientific Model Development, 2011, 4(3):625-641. doi:  10.5194/gmd-4-625-2011
    [31]
    Hodzic A, Madronich S, Bohn B, et al.Wildfire particulate matter in Europe during summer 2003:Meso-scale modeling of smoke emissions, transport and radiative effects.Atmospheric Chemistry and Physics, 2007, 7(15):4043-4064. doi:  10.5194/acp-7-4043-2007
    [32]
    Li M, Wang T, Xie M, et al.Agricultural fire impacts on ozone photochemistry over the Yangtze River Delta region, East China.J Geophys Res Atmos, 2018, 123(12):6605-6623. doi:  10.1029/2018JD028582
    [33]
    Zhao P S, Chen Y N, Su J.Size-resolved carbonaceous components and water-soluble ions measurements of ambient aerosol in Beijing.Journal of Environmental Sciences, 2017, 54:298-313. doi:  10.1016/j.jes.2016.08.027
    [34]
    Zheng B, Tong D, Li M, et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions.Atmospheric Chemistry and Physics, 2018, 18(19):14095-14111. doi:  10.5194/acp-18-14095-2018
    [35]
    Ma J Z, Wang W, Chen Y, et al.The IPAC-NC field campaign:A pollution and oxidization pool in the lower atmosphere over Huabei, China.Atmospheric Chemistry and Physics, 2012, 12(9):3883-3908. doi:  10.5194/acp-12-3883-2012
    [36]
    Wang S, Xing J, Jang C, et al.Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique.Environ Sci Technol, 2011, 45(21):293-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e04d2f5122614174061a269262d51b79
    [37]
    周敏, 陈长虹, 王红丽, 等.上海市秋季典型大气高污染过程中颗粒物的化学组成变化特征.环境科学学报, 2012, 32(1):81-92. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201201011
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(3)

    Article views (3896) PDF downloads(30) Cited by()
    • Received : 2019-01-31
    • Accepted : 2019-04-28
    • Published : 2019-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint