Wu Hongkun, Chen Qiying, Hua Wei, et al. A statistical study of gravity wave with second-level radiosonde data in Sichuan. J Appl Meteor Sci, 2019, 30(4): 491-501. DOI:  10.11898/1001-7313.20190409.
Citation: Wu Hongkun, Chen Qiying, Hua Wei, et al. A statistical study of gravity wave with second-level radiosonde data in Sichuan. J Appl Meteor Sci, 2019, 30(4): 491-501. DOI:  10.11898/1001-7313.20190409.

A Statistical Study of Gravity Wave with Second-level Radiosonde Data in Sichuan

DOI: 10.11898/1001-7313.20190409
  • Received Date: 2018-11-20
  • Rev Recd Date: 2019-03-08
  • Publish Date: 2019-07-31
  • High vertical resolution radiosonde data of Sichuan Province from June 2014 to September 2017 are analyzed to derive important gravity wave parameters, such as wave energy, intrinsic frequencies, vertical and horizontal wavelengths, and propagation directions. The sampling period of these data is 1.2 s and the vertical resolution is 5-8 m. Five representative stations of Sichuan Province are investigated, including Ganzi, Hongyuan, Chengdu, Xichang and Dazhou. Data in troposphere (2-10 km) and stratosphere (18-25 km), and the latest upper-air wind measurement algorithm for L-band radiosonde sounding system are used to process the original data. Results show that there are obvious seasonal variabilities of gravity waves energy at various areas in Sichuan, strong in winter and weak in summer. In the troposphere, due to the influence of terrain, the energy in the western Sichuan and northern Sichuan regions is significantly smaller than that in other regions. And gravity wave activity is also affected by latitudes. There is no obvious spatial variation in vertical wavelength, and vertical wavelength in winter is slightly larger than summer. The vertical wavelength is concentrated at 1.5-3 km and 1.5-3.5 km in the troposphere and stratosphere, respectively. The horizontal wavelength is quite different, distributed in 0-300 km and 100-700 km, or averaged of 100 km and 350 km in the troposphere and stratosphere, respectively. The ratio of horizontal wavelength to vertical wavelength is 35:1 in the troposphere and 150:1 in the stratosphere. It indicates that gravity waves mainly propagate vertically in the troposphere and propagate horizontally in the stratosphere. In order to get more accurate intrinsic frequency of gravity waves, filtering is essential perform before calculation. There is a large regional difference for intrinsic frequency in the troposphere. The averaged intrinsic frequency in the Plateau regions in northwestern Sichuan is 3 (represents the Coriolis force parameter), while only 2.4 in other regions. There is no obvious spatial difference in the stratosphere, and the mean value is about 2. The vertical propagation directions of gravity waves at different stations in Sichuan are similar, with about 50% of the waves propagating upward in the troposphere and more than 90% in the stratosphere. Horizontal propagation direction of gravity wave is always influenced by background wind field, and it has significant uncertainty, especially in the troposphere. The horizontal propagation of gravity waves in stratosphere strongly depends on season, eastward in summer and westward in other seasons.
  • Fig. 1  Map of radiosonde stations

    Fig. 2  Original profiles of Chengdu Station at 0000 UTC 1 Jan 2015 (a)temperature, (b)zonal wind, (c)meridional wind

    Fig. 3  Gravity wave energy density in troposphere from Jun 2014 to Sep 2017 (a)potential energy, (b)kinetic energy, (c)total energy, (d)ratio of kinetic energy and potential energy

    Fig. 4  The same as in Fig. 3, but for the stratosphere

    Fig. 5  Monthly vertical wavelength in Sichuan Province from Jun 2014 to Sep 2017 (a)troposphere, (b)stratosphere

    Fig. 6  Frequency distributions of the vertical wavelength at Dazhou Station from Jun 2014 to Sep 2017 (a)troposphere, (b)stratosphere

    Fig. 7  Frequency distributions of the ratio of major axis to minor axis of polarization ellipse at Chengdu Station from Jun 2014 to Sep 2017 (a)troposphere before filtering, (b)troposphere after filtering, (c)stratosphere before filtering, (d)stratosphere after filtering

    Fig. 8  Frequency distributions of gravity wave horizontal wavelength at Chengdu Station from Jun 2014 to Sep 2017 (a)troposphere, (b)stratosphere

    Fig. 9  Frequency distributions of gravity wave horizontal propagating directions at Chengdu Station

    Table  1  The ratio of major axis to minor axis of polarization ellipse for other stations in Sichuan Province

    站点 对流层滤波前 对流层滤波后 平流层滤波前 平流层滤波后
    甘孜站 1.75 2.91 1.46 2.11
    红原站 1.73 3.03 1.43 2.07
    达州站 1.73 2.44 1.46 2.04
    西昌站 1.74 2.43 1.47 2.12
    DownLoad: Download CSV

    Table  2  The average gravity wave horizontal wavelength for other stations in Sichuan Province

    站点 对流层/km 平流层/km
    甘孜站 99.4 320.0
    红原站 96.3 343.7
    西昌站 117.1 329.9
    达州站 117.1 361.4
    DownLoad: Download CSV

    Table  3  The percentage of upward propagating gravity wave for each station in Sichuan Province

    站点 对流层/% 平流层/%
    甘孜站 56.5 93.3
    红原站 66.7 98.1
    成都站 48.4 94.9
    西昌站 55.7 91.9
    达州站 44.9 93.9
    DownLoad: Download CSV
  • [1]
    Fritts D C, Alexander M J.Gravity wave dynamics and effects in the middle atmosphere.Reviews of Geophysics, 2003, 41(1):1003. doi:  10.1029/2001RG000106
    [2]
    吴少平, 易帆.三维可压大气中重力波波包非线性传播的数值模拟.中国科学(技术科学), 2002, 32(2):176-183. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce200202005
    [3]
    Chen Qiying, Shen Xueshun, Sun Jian, et al.Momentum budget diagnosis and the parameterization of subgrid-scale orographic drag in global GRAPES.J Meteor Res, 2016, 30(5):771-788. doi:  10.1007/s13351-016-6033-y
    [4]
    钱永甫.包络地形和重力波拖曳对气候模拟效果的影响.应用气象学报, 2000, 11(1):13-20. doi:  10.3969/j.issn.1001-7313.2000.01.002
    [5]
    朱红伟, 刘宇迪.三维变量配置对惯性重力波频散性模拟的影响.应用气象学报, 2003, 14(5):533-541. doi:  10.3969/j.issn.1001-7313.2003.05.003
    [6]
    Eckermann S D, Hirota I, Hocking W K.Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings.Quart J Roy Meteor Soc, 2010, 121(521):149-186. http://cn.bing.com/academic/profile?id=a39c843268f7583bdd24b9572cd43eab&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    Hertzog A, Souprayen C, Hauchecorne A.Measurements of gravity wave activity in the lower stratosphere by Doppler lidar.J Geophys Res Atmos, 2001, 106(D8):7879-7890. doi:  10.1029/2000JD900646
    [8]
    Vincent R A, Reid I M.HF Doppler measurements of mesospheric gravity wave momentum fluxes.J Atmos Sci, 1983, 40(5):1321-1333. doi:  10.1175/1520-0469(1983)040<1321:HDMOMG>2.0.CO;2
    [9]
    Allen S J, Vincent R A.Gravity wave activity in the lower atmosphere:Seasonal and latitudinal variations.J Geophys Res Atmos, 1995, 100(D1):1327-1350. doi:  10.1029/94JD02688
    [10]
    Vincent R A, Allen S J, Eckermann S D.Gravity-Wave Parameters in the Lower Stratosphere//Gravity Wave Processes.Springer Berlin Heidelberg, 1997: 7-25.
    [11]
    Ogino S Y, Yamanaka M D, Fukao S.Interannual and day-to-day variations of gravity wave activity in the lower stratosphere over the eastern part of Japan observed in winter 1989-95.J Meteorol Soc Japan, 1999, 77(2):413-429. doi:  10.2151/jmsj1965.77.2_413
    [12]
    Yoshiki M, Sato K.A statistical study of gravity waves in the polar regions based on operational radiosonde data.J Geophys Res Atmos, 2000, 105(D14):17995-18011. doi:  10.1029/2000JD900204
    [13]
    Wang L, Geller M A.Morphology of gravity-wave energy as observed from 4 years (1998-2001) of high vertical resolution U.S.radiosonde data.J Geophys Res, 2003, 108(D16):ACL 1-1-ACL 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c37f1c2698d84b41c100b88d8391e2f
    [14]
    Zhang S D, Yi F.A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E) China.Annales Geophysicae, 2005, 23(3):665-673. doi:  10.5194/angeo-23-665-2005
    [15]
    Kitamura Y, Hirota I.Small-scale disturbances in the lower stratosphere revealed by daily rawin sonde observations.J Meteor Soc Japan, 1989, 67(5):817-831. doi:  10.2151/jmsj1965.67.5_817
    [16]
    卞建春, 陈洪滨, 吕达仁.用垂直高分辨率探空资料分析北京上空下平流层重力波的统计特性.中国科学(地球科学), 2004, 34(8):748-756. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200408007
    [17]
    王雪莲.利用高分辨探空资料分析热带下平流层重力波活动.南京: 南京信息工程大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10300-2006066416.htm
    [18]
    Mclandress C, Alexander M J, Wu D L.Microwave Limb Sounder observations of gravity waves in the stratosphere:A climatology and interpretation.J Geophys Res Atmos, 2000, 105(D9):11947-11967. doi:  10.1029/2000JD900097
    [19]
    Alexander M J, Beres J H, Pfister L.Tropical stratospheric gravity wave activity and relationships to clouds.J Geophys Res Atmos, 2000, 105(D17):22299-22309. doi:  10.1029/2000JD900326
    [20]
    Alexander M J.Interpretations of observed climatological patterns in stratospheric gravity wave variance.J Geophys Res Atmos, 1998, 103(D8):8627-8640. doi:  10.1029/97JD03325
    [21]
    Sawyer J S.Quasi-periodic wind variations with height in the lower stratosphere.Quart J Roy Meteor Soc, 2010, 87(374):607-609. http://cn.bing.com/academic/profile?id=5fc1108a7869864d66a3d51399b27a10&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Eckermann S D.Hodographic analysis of gravity waves:Relationships among stokes parameters rotary spectra and cross-spectral methods.J Geophys Res Atmos, 1996, 101(D14):19169-19174. doi:  10.1029/96JD01578
    [23]
    马颖, 姚雯, 黄炳勋.59型与L波段探空仪温度和位势高度记录对比.应用气象学报, 2010, 21(2):214-220. doi:  10.3969/j.issn.1001-7313.2010.02.011
    [24]
    马金, 郑向东.混合层厚度的经验计算及与探空观测对比分析.应用气象学报, 2011, 22(5):567-576. doi:  10.3969/j.issn.1001-7313.2011.05.006
    [25]
    王学忠, 胡邦辉, 王举.探空气球漂移特征及对三角形法计算散度的影响.应用气象学报, 2015, 26(3):319-327. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150307&flag=1
    [26]
    姚雯, 马颖.秒级探空数据随机误差评估.应用气象学报, 2015, 26(5):600-609. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150509&flag=1
    [27]
    陈磊, 卞建春, 刘毅, 等.可业务化应用的L波段探空系统高空风改进算法.沙漠与绿洲气象, 2017, 11(1):22-27. http://d.old.wanfangdata.com.cn/Periodical/xjqx201701003
    [28]
    吴永富, 徐寄遥, 袁韡, 等.北京上空高分辨率气球探空观测的温度垂直波数谱.空间科学学报, 2007, 27(1):47-54. doi:  10.3969/j.issn.0254-6124.2007.01.009
    [29]
    赵南, 甘璐, 沈新勇.涡旋流自发辐射惯性重力波的初步解析研究.应用气象学报, 2010, 21(1):83-88. doi:  10.3969/j.issn.1001-7313.2010.01.011
    [30]
    王晓芳, 崔春光, 胡伯威.与水平风切变强度不均匀相联系的CISK惯性重力波.应用气象学报, 2007, 18(6):760-768. doi:  10.3969/j.issn.1001-7313.2007.06.004
    [31]
    张云, 熊建刚, 万卫星.中层大气重力波的全球分布特征.地球物理学报, 2011, 54(7):1711-1717. doi:  10.3969/j.issn.0001-5733.2011.07.003
    [32]
    Eckermann S D, Hocking W K.Effect of superposition on measurements of atmospheric gravity waves:A cautionary note and some reinterpretations.J Geophys Res Atmos, 1989, 94(D5):6333-6339. doi:  10.1029/JD094iD05p06333
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (5142) PDF downloads(49) Cited by()
    • Received : 2018-11-20
    • Accepted : 2019-03-08
    • Published : 2019-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint