Wang Jingxuan, Guo Jianping, Li Rui. Accumulated temperature stability of spring maize and its application to growth period forecast. J Appl Meteor Sci, 2019, 30(5): 577-585. DOI:  10.11898/1001-7313.20190506.
Citation: Wang Jingxuan, Guo Jianping, Li Rui. Accumulated temperature stability of spring maize and its application to growth period forecast. J Appl Meteor Sci, 2019, 30(5): 577-585. DOI:  10.11898/1001-7313.20190506.

Accumulated Temperature Stability of Spring Maize and Its Application to Growth Period Forecast

DOI: 10.11898/1001-7313.20190506
  • Received Date: 2019-05-10
  • Rev Recd Date: 2019-07-24
  • Publish Date: 2019-09-30
  • Northeast China is the largest spring maize production area in China and plays a vital role in ensuring food security. Temperature is an important environmental factor affecting agricultural production, especially for mid-high latitudes. Accumulated temperature, as a measure of heat, can be used to estimate the growth rate of crops, and the advance or delay of the growth period will affect the accumulation of dry matter in crops. Therefore, accurate forecast of maize growth period can promote current farming systems and management measures to ensure spring maize yield. As one of the most commonly used accumulated temperature calculation methods, the active accumulated temperature is refered to the accumulation of the average daily temperature over a period of time above a certain threshold, which is widely used in phenological period forecasting, agrometeorological disaster assessment, introduction of new varieties, and agro-climatic thematic analysis and zoning. The active accumulated temperature required for the growth period of the crop is not a constant. The relationship between crop development speed and temperature is not linear. Affected by the crop variety and environmental factors, the active accumulated temperature reflects the instability to influence application effect. Therefore, it is of great significance to modify the existing accumulated temperature models and improve the stability of accumulated temperature for better application. Based on the growth and development of spring maize, 5 agrometeorological stations in Northeast China, Hailun, Dunhua, Changling, Kuandian and Zhuanghe are selected to comprehensively analyze the meteorological factors affecting the stability of accumulated temperature and to revise the widely used active accumulated temperature model. After evaluating its effect, the revised model is applied to the growth period forecast of spring maize. Results show that due to its important role in affecting the stability of the accumulated temperature, the temperature is the key factor considered in the model revision. The revised model improves its stability and reduces variation coefficients in the emergence-heading period and the heading-maturation period by 0.42% and 1.42%, respectively. Using data in 1981-2010 for hindcast and data in 2011-2017 for forecast test, compared with the original active accumulated temperature model, the forecast error in revised model during the mature period is reduced by 3.78 d and 1.1 d. The revised model does not improve the forecast of the heading period.
  • Fig. 1  Quadratic fitting curve between average temperature and active accumulated temperature of spring maize in emergence-heading period

    Fig. 2  Quadratic fitting curve between average temperature and active accumulated temperature of spring maize in heading-maturation period

    Table  1  Temperatures of three fundamental points during the growing season of spring maize

    发育阶段 最适温度/℃ 下限温度/℃ 上限温度/℃
    出苗-抽雄阶段 24.0 12.0 35.0
    抽雄-成熟阶段 24.0 15.0 35.0
    DownLoad: Download CSV

    Table  2  Determination coefficient(R2) of quadratic fitting curve between impact factors and active accumulated temperature in growth periods

    发育阶段 站点 日最高温度 日平均温度 日最低温度 降水量 日照时长
    出苗-抽雄阶段 海伦 0.1374 0.2096* 0.4638** 0.0456 0.0136
    敦化 0.1851 0.2969** 0.3718** 0.1076 0.0201
    长岭 0.1585 0.0867 0.0118 0.1597 0.1300
    宽甸 0.2125* 0.0638 0.0059 0.0258 0.0367
    庄河 0.1050 0.1370 0.1045 0.0077 0.0374
    抽雄-成熟阶段 海伦 0.5769** 0.6511** 0.6526** 0.0455 0.1052
    敦化 0.2290* 0.3171** 0.3700** 0.0327 0.1346
    长岭 0.3126** 0.3741** 0.3368** 0.0378 0.0065
    宽甸 0.1246 0.2071* 0.3250** 0.0238 0.1603
    庄河 0.1981 0.2482* 0.2564* 0.0166 0.0059
    注:*,**分别表示相关达到0.05,0.01显著性水平。
    DownLoad: Download CSV

    Table  3  Inter-annual variation coefficients of active accumulated temperature models(unit:%)

    站点 模型 出苗-抽雄阶段 抽雄-成熟阶段
    海伦 原模型 9.1 13.6
    订正模型 8.6 9.6
    敦化 原模型 8.1 13.5
    订正模型 7.7 12.1
    长岭 原模型 9.1 7.8
    订正模型 8.6 7.3
    宽甸 原模型 4.6 7.6
    订正模型 4.5 6.9
    庄河 原模型 7.3 5.9
    订正模型 6.7 5.1
    DownLoad: Download CSV

    Table  4  The accumulated temperature average of original and revised models during 1981-2010(unit:℃·d)

    站点 模型 出苗-抽雄阶段 抽雄-成熟阶段
    海伦 原模型 1168.2 985.1
    订正模型 1197.3 685.9
    敦化 原模型 1043.1 892.7
    订正模型 1057.9 964.7
    长岭 原模型 1482.5 1100.5
    订正模型 1445.1 1164.4
    宽甸 原模型 1398.6 1126.9
    订正模型 1376.0 985.1
    庄河 原模型 1412.8 1257.7
    订正模型 1428.0 1282.9
    DownLoad: Download CSV

    Table  5  Difference in days of hindcasts by original and revised models to the observation for spring maize growth during 1981-2010

    站点 模型 出苗-抽雄阶段 抽雄-成熟阶段
    海伦 原模型 4.0 15.1
    订正模型 3.6 10.5
    敦化 原模型 3.5 16.8
    订正模型 3.5 8.3
    长岭 原模型 4.5 9.5
    订正模型 4.2 7.2
    宽甸 原模型 2.3 8.1
    订正模型 2.3 5.7
    庄河 原模型 4.1 3.7
    订正模型 2.9 2.6
    DownLoad: Download CSV

    Table  6  Difference in days of the forecasts by the original and revised models to the observation in emergence-heading period of spring maize during 2011-2017(unit:d)

    站点 模型 2011年 2012年 2013年 2014年 2015年 2016年 2017年 平均
    海伦 原模型 -1 0 2 4 2 1 -3 1.9
    订正模型 0 1 3 -2 3 2 0 1.6
    敦化 原模型 -1 -1 -2 -1 -2 2 1.5
    订正模型 -3 0 -1 0 3 2 1.5
    长岭 原模型 4 7 10 9 8 5 8 7.3
    订正模型 6 7 10 11 9 5 10 8.3
    宽甸 原模型 -1 -1 1 3 -4 -1 1 1.7
    订正模型 -2 -1 0 3 -4 -1 0 1.6
    庄河 原模型 -1 5 4 1 0 -1 1 2.0
    订正模型 0 6 4 -2 1 0 0 2.0
    注:正值表示预报比实际发育期延后,负值表示预报比实际发育期提前。
    DownLoad: Download CSV

    Table  7  Difference in days of the forecasts by the original and revised models to the observation in heading-maturity period of spring maize during 2011-2017(unit:d)

    站点 模型 2011年 2012年 2013年 2014年 2015年 2016年 2017年 平均
    海伦 原模型 -16 -18 -1 12 8 0 20 10.7
    订正模型 -4 -19 -1 -16 8 0 20 9.7
    敦化 原模型 -8 7 -9 -5 -11 -9 8.2
    订正模型 -4 9 -4 3 -8 -6 5.7
    长岭 原模型 -5 -4 -11 -7 -10 -12 -12 8.7
    订正模型 5 -3 -8 -4 -7 -10 -11 6.9
    宽甸 原模型 -2 -3 -1 -8 12 -1 -1 4.0
    订正模型 -2 -4 -1 -8 11 1 -1 4.0
    庄河 原模型 -1 -13 -13 -5 -12 -14 -13 10.1
    订正模型 0 -12 -12 -5 -12 -14 -14 9.9
    注:正值表示预报比实际发育期延后,负值表示预报比实际发育期提前。
    DownLoad: Download CSV
  • [1]
    王培娟, 韩丽娟, 周广胜, 等.气候变暖对东北三省春玉米布局的可能影响及其应对策略.自然资源学报, 2015, 30(8):1343-1355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201508009
    [2]
    张丽敏, 张淑杰, 郭海, 等.东北春玉米适宜生长期农业气候资源变化及其影响分析.江西农业学报, 2018, 30(2):93-99. http://d.old.wanfangdata.com.cn/Periodical/jxnyxb201802020
    [3]
    陈峪, 黄朝迎.气候变化对东北地区作物生产潜力影响的研究.应用气象学报, 1998, 9(3):314-320. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980345&flag=1
    [4]
    陈鹏狮, 于文颖, 纪瑞鹏, 等.辽宁地区玉米生长发育及产量对温度和降水的响应.中国农学通报, 2014, 30(27):175-181. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201427031
    [5]
    王永光, 艾孑兑秀.东北地区≥ 10℃有效积温的分析及预报.中国农业气象, 1997, 18(3):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700686491
    [6]
    Sacks W J, Kucharik C J.Crop management and phenology trends in the US Corn Belt:Impacts on yields, evapotranspiration and energy balance.Agric For Meteorol, 2011, 151(7):882-894. doi:  10.1016/j.agrformet.2011.02.010
    [7]
    钱拴, 陈晖, 王良宇.全国棉花发育期业务预报方法研究.应用气象学报, 2007, 18(4):539-547. doi:  10.3969/j.issn.1001-7313.2007.04.015
    [8]
    屈振江, 周广胜, 魏钦平.苹果花期冻害气象指标和风险评估.应用气象学报, 2016, 27(4):385-395. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160401&flag=1
    [9]
    秦剑.气候因子与云南粮食生产的关系.应用气象学报, 2000, 11(2):213-220. doi:  10.3969/j.issn.1001-7313.2000.02.011
    [10]
    Hou P, Liu Y, Xie R Z, et al.Temporal and spatial variation in accumulated temperature requirements of maize.Field Crops Research, 2014, 158:55-64. doi:  10.1016/j.fcr.2013.12.021
    [11]
    Kilpelainen A, Gregow H, Strandman H, et al.Impacts of climate change on the risk of snow-induced forest damage in Finland.Climatic Change, 2010, 99(1/2):193-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1c37cfbf2bf18aa8bfc30f5650ef52d
    [12]
    马兴祥, 邓振镛, 李栋梁, 等.甘肃省春小麦生态气候适宜度在适生种植区划中的应用.应用气象学报, 2005, 16(6):820-827. doi:  10.3969/j.issn.1001-7313.2005.06.014
    [13]
    Real A C, Borges J, Cabral J S, et al.Partitioning the grapevine growing season in the Douro Valley of Portugal:accumulated heat better than calendar dates.Int J Biometeor, 2015, 59(8):1045-1059. doi:  10.1007/s00484-014-0918-1
    [14]
    全国杂交水稻气象科研协作组.杂交水稻制种花期相遇的积温稳定性研究.气象, 1981, 7(1):23-26. http://www.cnki.com.cn/Article/CJFDTotal-QXXX198101012.htm
    [15]
    肖静, 李楠, 姜会飞.作物发育期积温计算方法及其稳定性.气象研究与应用, 2010, 32(2):64-67. doi:  10.3969/j.issn.1673-8411.2010.02.020
    [16]
    吴玉洁, 叶彩华, 姜会飞, 等.不同积温计算方法作物发育期模拟效果比较.中国农业大学学报, 2016, 21(10):117-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnydxxb201610015
    [17]
    李蕊, 郭建平.东北春玉米非线性积温模型参数改进.应用气象学报, 2018, 29(2):154-164. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180203&flag=1
    [18]
    朱伯伦.积温的不稳定性及其订正.贵州农业科学, 1985(1):63-64. http://www.cnki.com.cn/Article/CJFDTotal-GATE198501017.htm
    [19]
    陶炳炎.关于杂交水稻制种积温指标的稳定性.南京气象学院学报, 1980(2):199-210. http://www.cnki.com.cn/Article/CJFDTotal-NJQX198002010.htm
    [20]
    沈国权.当量积温及其应用.气象, 1981, 7(7):23-25. http://www.cnki.com.cn/Article/CJFDTotal-QXXX198107009.htm
    [21]
    朱海霞, 李秀芬, 王萍, 等.黑龙江省水稻生长季积温计算方法.应用气象学报, 2017, 28(2):247-256. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170212&flag=1
    [22]
    李蕊, 郭建平.东北春玉米积温模型的改进与比较.应用气象学报, 2017, 28(6):678-689. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170604&flag=1
    [23]
    李有, 董中强, 宋贤明.积温学说的不稳定性和修正式的评价.华北农学报, 1993, 8(增刊Ⅰ):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb1993z1020
    [24]
    Robeertson W G.Development of Simplified Agroclimatic Procedures for Assessing Temperature Effects on Crop Development.Manila: Philippine Weather Breau, 1970: 327-343.
    [25]
    高亮之, 金之庆, 黄耀, 等.水稻计算机模拟模型及其应用之一水稻钟模型——水稻发育动态的计算机模型.中国农业气象, 1989, 10(3):3-10. http://www.cnki.com.cn/Article/CJFDTotal-ZGNY198903001.htm
    [26]
    刘玲, 郭建平, 高素华.低温、干旱并发对玉米影响的评估研究.气象, 2006, 32(4):116-120. doi:  10.3969/j.issn.1000-0526.2006.04.021
    [27]
    张建平, 赵艳霞, 王春乙.不同时段低温冷害对玉米灌浆和产量的影响模拟.西北农林科技大学学报(自然科学版), 2012, 40(9):115-121. http://www.cnki.com.cn/Article/CJFDTotal-XBNY201209019.htm
    [28]
    包义清, 单传奇.浅谈玉米花粒期的管理技术.农民致富之友, 2015(9):147. doi:  10.3969/j.issn.1003-1650.2015.09.144
    [29]
    Xu Y H, Guo J P, Zhao J F, et al.Scenario analysis on the adaptation of different maize varieties to future climate change in Northeast China.J Meteor Res, 2014, 28(3):469-480. doi:  10.1007/s13351-014-3141-4
    [30]
    王宗明, 张柏, 张树清, 等.松嫩平原农业气候生产潜力及自然资源利用率研究.中国农业气象, 2005, 26(1):1-6. doi:  10.3969/j.issn.1000-6362.2005.01.001
    [31]
    朱其文, 张丽, 孙霞.吉林省初霜中长期预报方法研究.吉林气象, 2003(增刊Ⅰ):22-25. http://d.old.wanfangdata.com.cn/Periodical/jlqx2003z1010
    [32]
    崔耀平, 路婧琦, 刘素洁, 等.我国春玉米物候变化趋势及其与水热条件的关系.水土保持通报, 2018, 38(2):82-86. http://d.old.wanfangdata.com.cn/Periodical/stbctb201802014
    [33]
    毛恒青, 万晖.华北、东北地区积温的变化.中国农业气象, 2000, 21(3):1-5. doi:  10.3969/j.issn.1000-6362.2000.03.001
    [34]
    季生太, 杨明, 纪仰慧, 等.黑龙江省近45年积温变化及积温带的演变趋势.中国农业气象, 2009, 30(2):133-137. doi:  10.3969/j.issn.1000-6362.2009.02.002
  • 加载中
  • -->

Catalog

    Figures(2)  / Tables(7)

    Article views (5426) PDF downloads(88) Cited by()
    • Received : 2019-05-10
    • Accepted : 2019-07-24
    • Published : 2019-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint