Citation: | Guo Xueliang, Fang Chungang, Lu Guangxian, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. DOI: 10.11898/1001-7313.20190601. |
Important progresses of weather modification technologies and application are made from 2008 to 2018 in China due to the strong requirements from drought relief, hail suppression, bioenvironmental protection, and important activities support. Supported by both national and provincial projects, important field experiments and achievements have been made in aspects of aerosols, cloud and fog structure and precipitation formation mechanism. The national weather modification operational model is established and utilized in real-time operation, and it can greatly improve the forecasting ability of properties and evolution of target clouds and plays an important role in designing operational plan. Some key observational instruments and seeding instrumentation relevant to weather modification such as airborne cloud particles measuring system, multi-channel microwave radiometer, X-band polarized Doppler radar, fog monitor, and advanced cloud-seeding rocket are developed and applied, and this achievement greatly improve the surveillance and identification of seeding condition and seeding ability. Advanced weather modification aircraft based on King-Air 350ER and M-60 are refitted and applied to weather modification activities through national and local projects of engineering construction, which largely improve the operational flight height, navigation time and seeding ability. The new weather modification technologies, such as ionization, femtosecond laser and acoustic wave etc., are tested in laboratory experiment. Important progresses are made on the mechanism and numerical simulation of snow formation induced by femtosecond laser.There are still many aspects, such as effectiveness evaluation, the theory and observation in identification of suitable conditions for weather modification operation, needing improvement. The research and application of new theories, technologies and methods relevant to weather modification should be further strengthened. The cloud is the target for weather modification operation, however, the knowledge and treatment of clouds and precipitation in atmospheric community is still semi-quantitative. The non-repeatability of natural clouds and precipitation processes and limitation of current weather modification technologies cause the difficulty of repeatable experiment of weather modification, and many uncertainties for effectiveness evaluation. The present weather prediction primarily depends on numerical models, and the incomplete quantitative treatments of cloud physical processes in these models restrict the accurate prediction of clouds and precipitation, and the application of model results is also challenging. It is critical to improve the observation ability of cloud structure and precipitation formation processes. The current remote sensing technologies in the phase detection of cloud particles and cloud dynamics are very limited and greatly impede the improvement of weather modification.
Fig. 3 The vertical structure of a hail cloud at Pingliang of Gansu on 25 Jun 2011 observed by X-band polarized Doppler radar system jointly developed by Chinese Academy of Meteorological Sciences and Ordnance Science and Research Academy of China
(red color denotes hailstone and yellow one denotes graupel in cloud)
Fig. 5 Laboratory experiment of snow condensation induced by femtosecond laser with the temperature of -5℃ and relative humidity of 90% (from Reference [37]) (a)before the arrival of the laser, (b)after the arrival of the laser
(the red arrow is the direction of the laser pulse, the upper-layer is the wind turbulence and the low-layer white is the accumulative snow induced by laser pulse)
[1] |
顾震潮.论近年来云雾滴谱形成理论的研究.气象学报, 1962, 32(2):267-284. http://www.cnki.com.cn/Article/CJFDTotal-QXXB196204000.htm
|
[2] |
黄美元, 徐华英, 周玲.中国人工防雹四十年.气候与环境研究, 2000, 5(3):318-327. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200003012
|
[3] |
黄美元, 沈志来, 洪延超.半个世纪的云雾、降水和人工影响天气研究进展.大气科学, 2003, 27(4):536-551. doi: 10.3878/j.issn.1006-9895.2003.04.08
|
[4] |
姚展予.中国气象科学研究院人工影响天气研究进展回顾.应用气象学报, 2006, 17(6):786-795. doi: 10.3969/j.issn.1001-7313.2006.06.016
|
[5] |
Ma J Z, Guo X L, Zhao C S, et al.Recent progress in cloud physics research in China.Adv Atmos Sci, 2007, 24:1121-1137. doi: 10.1007/s00376-007-1121-7
|
[6] |
雷恒池, 洪延超, 赵震, 等.近年来云降水物理和人工影响天气研究进展.大气科学, 2008, 32(4):967-974. doi: 10.3878/j.issn.1006-9895.2008.04.21
|
[7] |
段婧, 毛节泰.气溶胶与云相互作用的研究进展.地球科学进展, 2008, 23(3):252-261. doi: 10.3321/j.issn:1001-8166.2008.03.005
|
[8] |
Guo X L, Zheng G G.Advances in weather modification from 1997 to 2007 in China.Adv Atmos Sci, 2009, 26(2):240-252. doi: 10.1007/s00376-009-0240-8
|
[9] |
郑国光, 郭学良.人工影响天气科学技术现状与发展趋势.中国工程科学, 2012, 14(9):20-27. http://d.old.wanfangdata.com.cn/Periodical/zggckx201209003
|
[10] |
方春刚, 郭学良, 王广河.我国人工影响天气探测装备技木.气象知识, 2012(2):16-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203904252
|
[11] |
郭学良, 付丹红, 胡朝霞.云降水物理与人工影响天气研究进展(2008-2012年).大气科学, 2013, 37(2):351-363. http://d.old.wanfangdata.com.cn/Periodical/daqikx201302013
|
[12] |
Guo X L, Fu D H, Li X Y, et al.Advances in cloud physics and weather modification in China.Adv Atmos Sci, 2015, 32(2):230-249. doi: 10.1007/s00376-014-0006-9
|
[13] |
毛节泰, 郑国光.对人工影响天气若干问题的探讨.应用气象学报, 2006, 17(5):643-646. http://qikan.camscma.cn/jamsweb/article/id/200605109
|
[14] |
Zhu S C, Guo X L, Lu G X, et al.Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observations in Northern China.J Atmos Sci, 2015, 72:2011-2032. doi: 10.1175/JAS-D-14-0194.1
|
[15] |
朱士超, 郭学良.华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究.气象学报, 2014, 72(2):366-389. http://d.old.wanfangdata.com.cn/Periodical/qxxb201402013
|
[16] |
朱士超, 郭学良.华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究.大气科学, 2015, 9(2):370-385. http://d.old.wanfangdata.com.cn/Periodical/daqikx201502012
|
[17] |
卢广献, 郭学良.环北京春季大气气溶胶分布、来源及其与CCN转化关系的飞机探测.科学通报, 2012, 57(15):1334-1344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201215007
|
[18] |
楼小凤, 史月琴, 孙晶, 等.中国人工影响天气准隐式云分辨模式的研制和应用.科学通报, 2012, 57(7):580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201207013
|
[19] |
郭丽君, 郭学良.利用地基多通道微波辐射计遥感反演华北持续性大雾天气温、湿度廓线的检验研究.气象学报, 2015, 73(2):368-381. http://d.old.wanfangdata.com.cn/Periodical/qxxb201502012
|
[20] |
郭丽君, 郭学良, 方春刚, 等.华北一次持续性重度雾霾天气的产生、演变与转化特征观测分析.中国科学(D辑), 2015, 45(4):427-443. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201504005
|
[21] |
郭丽君, 郭学良.北京2009-2013年期间持续性大雾的类型、垂直结构及物理成因.大气科学, 2016, 40(2):296-310. http://d.old.wanfangdata.com.cn/Periodical/daqikx201602006
|
[22] |
Luan T, Guo X, Guo L, et al.Quantifying the relationship among PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing city.Atmos Chem Phys, 2018, 18:203-225. doi: 10.5194/acp-18-203-2018
|
[23] |
Xu X, Guo X, Zhao T, et al.Are precipitation anomalies associated with aerosol variations over eastern China? Atmos Chem Phys, 2017, 17:8011-8019. doi: 10.5194/acp-17-8011-2017
|
[24] |
栾天, 郭学良, 张天航, 等.不同降水强度对PM2.5的清除作用及影响因素.应用气象学报, 2019, 30(3):279-291. doi: 10.11898/1001-7313.20190303
|
[25] |
常祎, 郭学良.青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征.科学通报, 2016, 61(15):1706-1720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201615012
|
[26] |
Chang Y, Guo X L, Tang J, et al.Aircraft measurement campaign on summer cloud microphysical properties over the Tibetan Plateau.Scientific Reports, 2019, 9:4912. doi: 10.1038/s41598-019-41514-5
|
[27] |
唐洁, 郭学良, 常祎.2014年夏季青藏高原云和降水微物理特征的数值模拟研究.气象学报, 2018, 76(6):1053-1068. http://d.old.wanfangdata.com.cn/Periodical/qxxb201806016
|
[28] |
唐洁, 郭学良, 常祎.青藏高原那曲地区夏季一次对流云降水过程的云微物理及区域水分收支特征.大气科学, 2018, 42(6):1327-1343. http://d.old.wanfangdata.com.cn/Periodical/daqikx201806011
|
[29] |
汪会, 郭学良.青藏高原那曲地区一次深对流云垂直结构的多源卫星和地基雷达观测对比分析.气象学报, 2018, 76(6):996-1013. http://d.old.wanfangdata.com.cn/Periodical/qxxb201806012
|
[30] |
中国气象科学研究院科研进展: 大气物理与人工影响天气.中国气象科学研究院年报, 2017: 57-74.
|
[31] |
卢建平, 黄建平, 郭学良, 等.探测大气温湿廓线的35通道微波辐射计设计原理与特点.气象科技, 2014, 42(2):193-197. http://d.old.wanfangdata.com.cn/Periodical/qxkj201402002
|
[32] |
刘丰.北京奥运会开幕式火箭作业延迟降水时间浅析.气象, 2008, 34(增刊Ⅰ):156-157. http://www.cnki.com.cn/Article/CJFDTotal-QXXX2008S1027.htm
|
[33] |
潘雯菁, 吴奕霄, 周嘉健, 等.南京青奥会开幕式期间人工减雨作业对雨滴谱的影响分析.气象科学, 2019, 39(2):237-246. http://d.old.wanfangdata.com.cn/Periodical/qxkx201902010
|
[34] |
倪思聪, 魏鸣.2014年8月南京青奥会开幕式人工减雨作业回波分析.气象科学, 2018, 38(1):104-112. http://d.old.wanfangdata.com.cn/Periodical/qxkx201801012
|
[35] |
Vonnegut B, Maynard K, Sykes W G, et al.Technique for introducing low density space charge into the atmosphere.J Geophys Res, 1961, 66(3):823-830. doi: 10.1029/JZ066i003p00823
|
[36] |
周志敏, 郭学良, 崔春光, 等.强风暴电过程对霰粒子含量和谱分布影响的数值模拟研究.气象学报, 2011, 69(9):830-846. http://d.old.wanfangdata.com.cn/Periodical/qxxb201105008
|
[37] |
Ju J J, Sun H Y, Hu X K, et al.Temporal evolution of condensation and precipitation induced by a 22-TW laser.Optics Express, 2018, 26(3):2785. doi: 10.1364/OE.26.002785
|
[38] |
French J R, Friedrich K, Tessendorf S A, et al.Precipitation formation from orographic cloud seeding.PNAS, 2018, 115(6):1168-1173. doi: 10.1073/pnas.1716995115
|
[39] |
许小峰, 胡欣, 王卫丹, 等.国内大气科学发展状况及优先领域分析.应用气象学报, 2006, 17(6):657-664. http://qikan.camscma.cn/jamsweb/article/id/200606114
|
[40] |
张人禾.开拓领域, 推动业务, 努力创新——纪念中国气象科学研究院成立50周年.应用气象学报, 2006, 17(6):647-648. http://qikan.camscma.cn/jamsweb/article/id/200606112
|
[41] |
党娟, 苏正军, 房文, 等.三七炮弹的碘化银成核率检测.应用气象学报, 2016, 27(2):140-147. doi: 10.11898/1001-7313.20160202
|
[42] |
苏正军, 郑国光, 关立友, 等.含AgI人工冰核粒子的电镜分析.应用气象学报, 2008, 19(2):137-144. http://qikan.camscma.cn/jamsweb/article/id/20080226
|
[43] |
樊志超, 周盛, 汪玲, 等.湖南秋季积层混合云系飞机人工增雨作业方法.应用气象学报, 2018, 29(2):200-216. doi: 10.11898/1001-7313.20180207
|
[44] |
袁野, 曾光平.利用双多普勒雷达分析对流云垂直运动结构试验.应用气象学报, 2007, 18(3):306-313. http://qikan.camscma.cn/jamsweb/article/id/20070352
|