Guo Xin, Guo Xueliang, Chen Baojun, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. DOI:  10.11898/1001-7313.20190602.
Citation: Guo Xin, Guo Xueliang, Chen Baojun, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. DOI:  10.11898/1001-7313.20190602.

Numerical Simulation on the Formation of Large-size Hailstones

DOI: 10.11898/1001-7313.20190602
  • Received Date: 2019-07-15
  • Rev Recd Date: 2019-10-14
  • Publish Date: 2019-11-30
  • Although large-size hailstones may cause damages to agriculture, human life and properties, the formation mechanism of large-size hailstones has not been completely understood. In order to further understand the formation of large-size hailstones, the three-dimensional compressible non-hydrostatic hailstorm model with hail-bin microphysics that can simulate different sizes of hailstones developed by Institute of Atmospheric Physics, Chinese Academy of Sciences, is used to investigate the formation process of a heavy hailstorm in Beijing on 16 July 2014. The observed maximum diameter of hailstones on the ground is up to 7 cm. The convection effective potential energy is 1785.3 J·kg-1 and the moisture content is high in the lower layer and low in the upper layer, indicating that the atmosphere is strongly instable and is conducive to the formation of strong convection. The simulated hail cloud-top height is about 13 km, which is consistent with that observed by the S-band radar in Beijing. The simulated maximum updraft is up to 30 m·s-1, indicating that the hailstorm is strong and severe. Moreover, the storm has an obvious tilting dynamic structure due to the strong wind shear at middle and upper levels, which makes the separation of falling path of hailstones and raindrops from the main updraft and causes the long duration of hailstorm. The simulated microphysical process of the hailstorm has some obvious characteristics, one of the most prominent properties is that there is an accumulation zone of high supercooled rain water with 12-16 g·kg-1 located between -35℃—-10℃. The main process of embryos production for hailstones is the collision between cloud ice and supercooled raindrops, and the production rate may be up to 10-2 g·kg-1·s-1. And the hailstone growth process strongly depends on the accretion of supercooled cloud water by hailstones, and the growth rate is the same as that of production rate of embryos of hailstones. This research shows that the supercooled rainwater accumulation zone may exist in the formation process of large hailstones in Beijing. However, the model is not able to simulate the size of hailstones up to 7 cm, the simulated maximum sizes of hailstones are usually about 2-3 cm. Causes are not clear, one important cause might be related with the melting process of hailstones in the model, and the initial atmospheric field used in the model. The issue needs to be further clarified and the microphysical processes relevant to hailstones need to be improved in the future study.
  • Fig. 1  Radar echo evolutions for the hailstorm in Beijing on 16 Jul 2014

    Fig. 2  Vertical distribution of radar reflectivity on 16 Jul 2014 (a)the observed at 1654 BT, (b)the simulated at the 30th minute (unit:dBZ, the arrow denotes the synthetic vector of u and w)

    Fig. 3  The simulated maximum surface rainfall intensity (Rrmax) and the maximum hailfall intensity (Rhmax)

    Fig. 4  Temporal and height distributions of horizontal maximum updraft (the red solid line) and downdraft (the blue dashed line)(unit:m·s-1) (black solid lines for isotherm)

    Fig. 5  Vertical distributions of updraft and downdraft

    (the black line denotes cloud area, colored areas denote updraft and downdraft, the arrow denotes the synthetic vector of u and w)

    Fig. 6  Temporal and height distributions of the horizontal cloud hydrometeor mixing ratios (the colored line, unit:g·kg-1) of the simulated hailstorm (the black line denotes the isotherm, unit:℃)

    Fig. 7  Temporary variations of maximum mixing ratios of hydrometeors

    Fig. 8  Evolutions of vertical distributions of graupel (hail-bin) mixing ratios (the contour, unit:g·kg-1) (the shaded denotes updraft, the arrow denotes synthetic vector of u and w)

    Fig. 9  Temporary variations of maximum graupel (hail-bin) mixing ratios

    Fig. 10  Temporary variations of graupel (hail-bin) quantitative concentration in the simulated domain

    Fig. 11  Temporary variations of embryos production rate(a) and growth rate of hailstones(b)

    Table  1  Characteristics of the observed and simulated hailstorms

    特征参量 观测 模拟
    云顶高度/km 14 13
    云顶温度/℃ < -50 < -50
    云底温度/℃ >20 >20
    生命史/min >60 >60
    最大回波强度/dBZ 65 >65
    最大上升气流速度/(m·s-1) 30
    最大降雨强度/(mm·h-1) 50 100
    地面最大冰雹尺度/cm 3.5~7 >3.5
    DownLoad: Download CSV
  • [1]
    Browning K A, Ludlam F H, Macklin W C.The density and structure of hailstone.Q J Roy Meteor Soc, 1963, 9:75-84. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1301.1737
    [2]
    Sulakevelize G K, Binilashvei N S, Lapcheva V F.Formation of Precipitation and Modification of Hail Processes.Israel Program for Scientific Translations, 1967:1-208.
    [3]
    Cotton W, Anthes R.Storm and Cloud Dynamics, Vol.44.the International Geophysics Series.New York:Academic Press, 1989.
    [4]
    Knight C A, Knight N C, Dye J E, et al.The mechanism of precipitation formation in Northeastern Colorado cumulus.Part Ⅰ:Observation of the precipitation iteself.J Atmos Sci, 1974, 31:2142-2147. doi:  10.1175/1520-0469(1974)031<2142:TMOPFI>2.0.CO;2
    [5]
    Battan L J.Doppler radar observations of a hailstorm.J Appl Meteorol, 1975, 14(1):98-108. doi:  10.1175/1520-0450(1975)014<0098:DROOAH>2.0.CO;2
    [6]
    Browning K A, Foote G B.Airflow and hail growth in supercell storms and some implications for hail suppression.Q J Roy Meteor Soc, 1976, 102(433):499-533. doi:  10.1002/qj.49710243303
    [7]
    Nelson S P.The influence of storm flow structure on hail growth.J Atmos Sci, 1983, 40:1965-1983. doi:  10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2
    [8]
    Pflaum J C.Hail formation via microphysical recycling.J Atmos Sci, 1980, 37:160-173. doi:  10.1175/1520-0469(1980)037<0160:HFVMR>2.0.CO;2
    [9]
    Farley R D.Numerical modeling of hailstorms and hailstone growth.Part Ⅱ:The role of low density riming growth in hail production.J Climate Appl Meteor, 1987, 26:234-254. doi:  10.1175/1520-0450(1987)026<0234:NMOHAH>2.0.CO;2
    [10]
    Miller L J, Tuttle J D, Knight C A.Airflow and hail growth in a severe northern High Plains supercell.J Atmos Sci, 1988, 45:736-762. doi:  10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2
    [11]
    Tessendorf S A, Miller L J, Wiens K C, et al.The 29 June 2000 supercell observed during STEPS.Part Ⅰ:Kinematics and microphysics.J Atmos Sci, 2005.62:4127-4150. doi:  10.1175/JAS3585.1
    [12]
    Foote G B, Wade C G.Case study of a hailstorm in Colorado.Part Ⅰ:Radar echo structure and evolution.J Atmos Sci, 1982, 39(12):2828-2846. doi:  10.1175/1520-0469(1982)039<2828:CSOAHI>2.0.CO;2
    [13]
    黄美元, 徐华英, 周玲.中国人工防雹四十年.气候与环境研究, 2000, 5(3):318-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj200003012
    [14]
    徐华英, 何珍珍, 陈章昭, 等.爆炸影响上升气流的模拟实验.冰雹和人工防雹研究, 1983:84-95.
    [15]
    许焕斌, 王思微.一维时变冰雹云模式研究(一)反映雨和冰雹谱的双参数演变.气象学报, 1985, 43(1):13-25. http://www.cnki.com.cn/Article/CJFD1985-QXXB198501001.htm
    [16]
    许焕斌, 王思微.一维时变冰雹云模式研究(二)反映融化对雹谱双参数演变的影响.气象学报, 1985, 43(2):162-171. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198502004.htm
    [17]
    许焕斌, 王思微.二维冰雹云数值模式.气象学报, 1988, 46(2):227-236. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198802013.htm
    [18]
    胡志晋, 何观芳.积雨云中的微物理过程数值模拟——(二)阵雨、冰雹、雷雨的个例研究.气象学报, 1988, 46(1):28-40. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198801003.htm
    [19]
    孔凡铀, 黄美元, 徐华英.对流云中冰相过程的三维数值模拟Ⅱ:繁生过程作用.大气科学, 1991, 15(6):78-88. doi:  10.3878/j.issn.1006-9895.1991.06.09
    [20]
    洪延超.三维冰雹云催化数值模式.气象学报, 1998, 56(6):641-653. doi:  10.3321/j.issn:0577-6619.1998.06.001
    [21]
    洪延超, 肖辉, 李宏宇, 等.冰雹云中微物理过程研究.大气科学, 2002, 26(3):421-432. doi:  10.3878/j.issn.1006-9895.2002.03.13
    [22]
    郭学良, 黄美元, 洪延超, 等.三维冰雹分档强对流云数值模式研究I:模式建立及冰雹的循环增长机制.大气科学, 2001, 25(5):707-720. doi:  10.3878/j.issn.1006-9895.2001.05.13
    [23]
    郭学良, 黄美元, 洪延超, 等.三维冰雹分档强对流云数值模式研究II:冰雹粒子的分布特征.大气科学, 2001, 25(6):856-864. doi:  10.3878/j.issn.1006-9895.2001.06.13
    [24]
    王宏, 雷恒池, 德力格尔, 等.黄河上游地区强对流云特征的模拟分析.气候与环境研究, 2002, 7(4):397-408. http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200204003
    [25]
    刘术艳, 肖辉, 杜秉玉, 等.北京一次强单体雹暴的三维数值模拟.大气科学, 2004, 28(3):455-470. http://d.old.wanfangdata.com.cn/Periodical/daqikx200403012
    [26]
    陈宝君, 肖辉.过冷雨水低含量条件下冰雹形成和增长机制及其催化效果的数值模拟.大气科学, 2007, 31(2):273-290. doi:  10.3878/j.issn.1006-9895.2007.02.09
    [27]
    胡朝霞, 郭学良, 李宏宇, 等.慕尼黑一次混合型雹暴的数值模拟与成雹机制.大气科学, 2007, 31(5):973-986. http://d.old.wanfangdata.com.cn/Periodical/daqikx200705020
    [28]
    Xie B G, Zhang Q H, Wang Y Q.Observed characteristics of hail size in four regions in China during 1980-2005.J Climate, 2010, 23:4973-4982. doi:  10.1175/2010JCLI3600.1
    [29]
    陈宝君, 郑凯琳, 郭学良.超级单体风暴中大冰雹增长机制的模拟研究.气候与环境研究, 2012, 17(6):767-778. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201206014
    [30]
    陈宝君, 李爱华, 吴林林, 等.暖底对流云催化的微物理和动力效应的数值模拟.大气科学, 2016, 40(2):271-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx201602004
    [31]
    蒋瑛, 朱克云, 张杰.贵州地区冰雹云微物理过程及发展机制数值模拟研究.气象, 2016, 42(8):920-933. http://d.old.wanfangdata.com.cn/Periodical/qx201608002
    [32]
    赵文慧, 姚展予, 贾烁, 等.1961-2015年中国地区冰雹持续时间的时空分布特征及影响因子研究.大气科学, 2019, 43(3):539-551. http://d.old.wanfangdata.com.cn/Periodical/daqikx201903006
    [33]
    王雨曾, 魏新尧.两次冰雹过程的观测分析.气象, 1981, 7(8):37-39. http://www.cnki.com.cn/Article/CJFDTotal-QXXX198108020.htm
    [34]
    何观芳, 胡志晋.不同云底温度雹云成雹机制及其引晶催化的数值研究.气象学报, 1998, 56(1):31-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800465449
    [35]
    周玲, 陈宝君, 李子华, 等.冰雹云中累积区与冰雹的形成的数值模拟研究.大气科学, 2001, 25(4):536-550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx200104010
    [36]
    郑凯琳, 陈宝君.含水量累积区与冰雹增长行为之数值模拟.大气科学, 2011, 35(2):298-310. http://www.cnki.com.cn/Article/CJFDTotal-DQXK201102010.htm
    [37]
    洪延超.冰雹形成机制和催化防雹机制研究.气象学报, 1999, 57(1):30-44. doi:  10.1209-0295-5075-95-17005/
    [38]
    Guo X L, Huang M Y.Hail formation and growth in a 3D cloud model with hail-bin microphysics.Atmos Res, 2002, 63:59-99. doi:  10.1016/S0169-8095(02)00019-4
    [39]
    许焕斌, 段英.冰雹形成机制的研究并论人工雹胚与自然雹胚的"利益竞争"防雹假说.大气科学, 2001, 25(2):277-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx200102014
    [40]
    葛润生, 姜海燕, 彭红.北京地区雹暴气流结构的研究.应用气象学报, 1998, 9(1):1-7. http://qikan.camscma.cn/jamsweb/article/id/19980101
    [41]
    刘晓璐, 刘建西, 张世林, 等.基于探空资料因子组合分析方法的冰雹预报.应用气象学报, 2014, 25(2):168-175. http://qikan.camscma.cn/jamsweb/article/id/20140206
    [42]
    向玉春, 杨军, 唐仁茂, 等.LAPS在冰雹云模拟中的应用.应用气象学报, 2012, 23(3):331-339. http://qikan.camscma.cn/jamsweb/article/id/20120309
    [43]
    石宝灵, 王红艳, 刘黎平.云南多普勒天气雷达网探测冰雹的覆盖能力.应用气象学报, 2018, 29(3):270-281. doi:  10.11898/1001-7313.20180302
    [44]
    胡胜, 罗聪, 张羽, 等.广东大冰雹风暴单体的多普勒天气雷达特征.应用气象学报, 2015, 26(1):57-65. doi:  10.11898/1001-7313.20150106
    [45]
    蓝渝, 郑永光, 毛冬艳, 等.华北区域冰雹天气分型及云系特征.应用气象学报, 2014, 25(5):538-549. http://qikan.camscma.cn/jamsweb/article/id/20140503
    [46]
    楼小凤, 师宇, 卢广献.一次降雹过程的AgI系列催化模拟研究.应用气象学报, 2016, 27(2):129-139. doi:  10.11898/1001-7313.20160201
    [47]
    王瑾, 刘黎平.WSR-88D冰雹探测算法在贵州地区的评估检验.应用气象学报, 2011, 22(1):96-106. http://qikan.camscma.cn/jamsweb/article/id/20110110
    [48]
    王令, 郑国光, 康玉霞, 等.多普勒天气雷达径向速度图上的雹云特征.应用气象学报, 2006, 17(3):281-287. http://qikan.camscma.cn/jamsweb/article/id/20060349
    [49]
    Bluestein H B.Synoptic-Dynamic Meteorology in the Midlatitudes.Vol Ⅱ:Observations and Theory Systems.New York:Oxford Univ Press, 1993.
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (3850) PDF downloads(156) Cited by()
    • Received : 2019-07-15
    • Accepted : 2019-10-14
    • Published : 2019-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint