Lou Xiaofeng, Fu Yu, Sun Jing. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. DOI:  10.11898/1001-7313.20190603.
Citation: Lou Xiaofeng, Fu Yu, Sun Jing. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. DOI:  10.11898/1001-7313.20190603.

A Numerical Seeding Simulation of Convective Precipitation in Zhejiang, China

DOI: 10.11898/1001-7313.20190603
  • Received Date: 2019-07-15
  • Rev Recd Date: 2019-10-30
  • Publish Date: 2019-11-30
  • To change precipitation amount and distribution through artificial cloud seeding is one target of weather modification, especially for some important events. Cloud numerical simulations are important ways in research of weather modification activities. A 3-D convective model is used to do simulation for a convective rainfall case in Zhejiang on 1 September 2016. The 3-D convective model calculates 27 microphysical processes, which includes condensation, deposition, evaporation, collection, ice nucleation, ice multiplication, melting and freezing, auto conversion of cloud to rain, ice to graupel and graupel to hail. AgI seeding parameterization is based on cloud chamber results of ice forming processes by AgI which can be identified as deposition, contact freezing, condensation freezing and immersion freezing nucleation. Salt seeding scheme considers the micro-physical process between the salt particle and liquid and ice particles. Using the salt powder and AgI seeding scheme, a series of seeding simulations are designed with salt powder seeding, AgI seeding, and both of them, on seeding height levels, seeding rates, starting seeding times and the size of salt powder, to simulate seeding effects of warm cloud seeding, cold cloud seeding, and mixed cloud seeding schemes.Results show that salt powder seeding is mainly manifested by seeding effects at first rain-increasing then rain-reducing. The seeding mechanism is characterized by salt-dissolved droplets growth through colliding with cloud droplets, collected by raindrops, both of which fall to ground to increase precipitation. The rain enhancement effect is better when seeding in the ascending flow region with 12.5/L of salt powder amount of 30 μm particle size, the precipitation can be increased by 17.8%. AgI seeding is carried out, which basically shows an effect of increasing rainfall after rain reduction. The more silver iodide seeded, the greater the amount of rain reduction will be. For different seeding effects of salt powder and AgI, seeding effects are influenced by their amount of these two seeding agents. With 12.5/L of salt powder of 30 μm particle size, along with 100/L AgI agent, the precipitation can be increased by 19%. These results can be used to guide the field seeding experiment of weather modification with hygroscopic seeding agent and glycogenic seeding agent.
  • Fig. 1  Vertical section of simulated echo on 1 Sep 2016 (black line denotes temperature, unit:℃)

    Fig. 2  Vertical subsections of simulated vector, temperature and water substances (a)cloud water content (red line, unit:g·kg-1), vector (white arrow), vertical speed (the shaded), temperature (black line, unit:℃) at the 15th minute, (b)ice (the blue line, unit:g·kg-1), rain water (green line, unit:g·kg-1), temperature (black line, unit:℃) at the 15th minute, (c)cloud water content (red line, unit:g·kg-1), vector (white arrow), vertical speed (the shaded), temperature (black line, unit:℃) at the 40th minute, (d)ice (blue line, unit:g·kg-1), rain water (green line, unit:g·kg-1), graupel (the shaded), temperature (black line, unit:℃) at the 40th minute

    Fig. 3  Time series of rainwater source terms(a) and precipitation(b)

    Fig. 4  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of precipitation within 2 min with different salt particle size and small seeding rates, (c)time series of precipitation within 2 min with different salt particle size and big seeding rates

    Fig. 5  Subsection of simulated water substances, salt resolved water and main microphysical processes at the 32nd minute (a)the vertical section of simulated cloud water (red line, unit:g·kg-1), rainwater (blue line, unit:g·kg-1), graupel (green line, unit:g·kg-1), salt resolved water (the shaded), (b)the horizontal distribution of simulated cloud water (red line, unit:g·kg-1), rainwater (blue line, unit:g·kg-1), graupel (green line, unit:g·kg-1), salt resolved water (the shaded), (c)time series of microphysical processes between salt resolved drops and other water substances

    Fig. 6  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of precipitation within 2 min at different seeding level (unit:kt)

    Fig. 7  Precipitation within 2 min with different seeding start time (unit:kt)

    Fig. 8  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of precipitation within 2 min with different seeding rates

    Fig. 9  Time series of unseeded and seeded water substances

    Fig. 10  Seeding location and precipitation distribution (a)seeding area (black box) and subsections of simulated cloud water (red line, unit:g·kg-1), vertical speed (the shaded), temperature (green line, unit:℃), (b)time series of rainfall within 2 min with different seeding schemes

  • [1]
    李大山.人工影响天气现状与展望.北京:气象出版社, 2002.
    [2]
    郑国光, 郭学良.人工影响天气科学技术现状及发展趋势.中国工程科学, 2012, 14(9):20-27. http://d.old.wanfangdata.com.cn/Periodical/zggckx201209003
    [3]
    苏正军, 郑国光, 酆大雄.吸湿性物质催化云雨的研究进展.高原气象, 2009, 28(1):227-232. http://d.old.wanfangdata.com.cn/Periodical/gyqx200901029
    [4]
    Koenig L R, Murray F W.Theoretical experiments on cumulus dynamics.J Atmos Sci, 1983, 40:1241-1256. doi:  10.1175/1520-0469(1983)040<1241:TEOCD>2.0.CO;2
    [5]
    Levy G, Cotton W R.A numerical investigation of mechanisms linking glaciation of the ice-phase to the boundary layer.J Climate Appl Meteor, 1984, 23:1505-1519. doi:  10.1175/1520-0450(1984)023<1505:ANIOML>2.0.CO;2
    [6]
    Xue L L, Hashimoto A, Murakami M, et al.Implementation of a silver iodide cloud-seeding parameterization in WRF.Part Ⅰ:Model description and idealized 2D sensitivity tests.J Appl Meteor Climatol, 2013, 52:1433-1457, DOI: 10.1175/JAMC-D-12-0148.1.
    [7]
    Xue L L, Tessendorf S A, Nelson E, et al.Implementation of a silver iodide cloud-seeding parameterization in WRF.Part Ⅱ:3D simulations of actual seeding events and sensitivity tests.J Appl Meteor Climatol, 2013, 52:1458-1476, DOI: 10.1175/JAMC-D-12-0149.1.
    [8]
    何观芳, 胡志晋.人工影响积雨云机制的数值研究.应用气象学报, 1991, 2(1):32-39. http://qikan.camscma.cn/jamsweb/article/id/19910104
    [9]
    洪延超.三维冰雹云催化数值模式.气象学报, 1998, 56(6):641-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200506005
    [10]
    洪延超.冰雹形成机制和催化防雹机制研究.气象学报, 1999, 57(1):30-44. doi:  10.1209-0295-5075-95-17005/
    [11]
    刘诗军, 胡志晋, 游来光.碘化银核化过程的数值模拟研究.气象学报, 2005, 63(1):30-40. http://d.old.wanfangdata.com.cn/Periodical/qxxb200501004
    [12]
    于达维, 何观芳, 周勇, 等.三维对流云催化模式及其外场试用.应用气象学报, 2001, 12(增刊Ⅰ):122-132. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2001z1016
    [13]
    楼小凤, 孙晶, 史月琴, 等.减弱对流云降水的AgI催化原理的数值模拟研究.气象学报, 2014, 72(4):782-793. http://d.old.wanfangdata.com.cn/Periodical/qxxb201404012
    [14]
    楼小凤, 师宇, 卢广献.一次降雹过程的AgI系列催化模拟研究.应用气象学报, 2016, 27(2):129-139. doi:  10.11898/1001-7313.20160201
    [15]
    Guo X L, Zheng G G, Jin D Z.A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide.Atmos Res, 2006, 79:183-226. doi:  10.1016/j.atmosres.2005.04.005
    [16]
    Guo X L, Fu D H, Zheng G G.Modeling study on optimal convective cloud seeding in rain augmentation.J Korean Meteor Soc, 2007, 43:273-284. http://cn.bing.com/academic/profile?id=d50aae5a1fef34e1b39dd58ccb764845&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    史月琴, 楼小凤, 邓雪娇, 等.华南冷锋云系的人工引晶催化数值试验.大气科学, 2008, 32(6):1256-1275. http://d.old.wanfangdata.com.cn/Periodical/daqikx200806003
    [18]
    孙晶, 史月琴, 楼小凤, 等.人工缓减梅雨锋暴雨的数值试验.大气科学, 2010, 34(2):337-350. http://d.old.wanfangdata.com.cn/Periodical/daqikx201002008
    [19]
    方春刚, 郭学良, 王盘兴.碘化银播撒对云和降水影响的中尺度数值模拟研究.大气科学, 2009, 33(3):621-633. http://d.old.wanfangdata.com.cn/Periodical/daqikx200903018
    [20]
    何晖, 金华, 李宏宇, 等.2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果.气候与环境研究, 2012, 17(1):46-58. doi:  10.3878/j.issn.1006-9585.2011.10043
    [21]
    何晖, 高茜, 李宏宇.北京层状云人工增雨数值模拟试验和机理研究.大气科学, 2013, 37(4):905-922. http://d.old.wanfangdata.com.cn/Periodical/daqikx201304012
    [22]
    刘卫国, 陶玥, 党娟, 等.2014年春季华北两次降水过程的人工增雨催化数值模拟研究.大气科学, 2016, 40(4):669-688. http://d.old.wanfangdata.com.cn/Periodical/daqikx201604002
    [23]
    Rosenfeld D, Axisa D, Woodley W L, et al.A quest for effective hygroscopic cloud seeding.J Appl Meteorol Clim, 2010, 49:1548-1562. doi:  10.1175/2010JAMC2307.1
    [24]
    顾震潮, 陈炎涓, 徐乃璋, 等.南岳云雾降水物理观测(1960年3-8月)结果的初步分析.我国云雾降水微物理特征问题.北京:科学出版社, 1962:2-21.
    [25]
    马培民, 孙奕敏, 赵瑞华, 等.1963年夏季湖南盐粉催化浓积云降水试验效果的分析.气象学报, 1965, 35(3):280-291. http://www.cnki.com.cn/Article/CJFDTotal-QXXB196503002.htm
    [26]
    王伟民, 卢伟, 黄培强, 等.几种消暖云(雾)催化剂的试验研究.气象科学, 2000, 20(3):478-486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkx200004006
    [27]
    党娟, 苏正军, 房文, 等.几种粉末型吸湿性催化剂的试验研究.气象科技, 2017, 45(2):398-404. http://d.old.wanfangdata.com.cn/Periodical/qxkj201702026
    [28]
    姚展予.中国气象科学研究院人工影响天气研究进展回顾.应用气象学报, 2006, 17(6):786-795. http://qikan.camscma.cn/jamsweb/article/id/200606127
    [29]
    徐华英, 郝京甫.盐粉催化积云降水的数值模拟.大气科学, 1983, 7(4):403-410. http://www.cnki.com.cn/Article/CJFDTotal-DQXK198304006.htm
    [30]
    胡志晋, 严采蘩, 王玉彬.层状暖云降雨及其催化的数值模拟.气象学报, 1983, 41(1):79-88. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198301008.htm
    [31]
    胡志晋, 严采蘩.盐粉催化不同生命史的浓积云的数值模拟.大气科学, 1985, 9(1):62-72. http://www.cnki.com.cn/Article/CJFDTotal-DQXK198501007.htm
    [32]
    楼小凤, 何观芳, 胡志晋, 等.三维对流云盐粉催化模式的发展和催化模拟实验.高原气象, 2013, 32(2):491-500. http://www.cnki.com.cn/Article/CJFDTotal-GYQX201302016.htm
    [33]
    樊志超, 周盛, 汪玲, 等.湖南秋季积层混合云系飞机人工增雨作业方法.应用气象学报, 2018, 29(2):200-216. doi:  10.11898/1001-7313.20180207
    [34]
    蒋年冲, 吴必文, 袁野, 等.江淮地区对流云人工增雨技术研究基地的可行性分析.应用气象学报, 2003, 14(增刊Ⅰ):151-155. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1018
    [35]
    胡雯, 申宜运, 曾光平.南方夏季对流云人工增雨技术研究.应用气象学报, 2005, 16(3):413-416. http://qikan.camscma.cn/jamsweb/article/id/20050351
    [36]
    曾光平, 吴明林.古田水库人工降雨效果的综合评价.应用气象学报, 1993, 4(2):154-161. http://qikan.camscma.cn/jamsweb/article/id/19930229
    [37]
    Dennis A S, Koscielski A.Results of a randomized cloud seeding experiment in South Dakota.J Appl Meteor, 1969, 8(4):556-565. doi:  10.1175/1520-0450(1969)008<0556:ROARCS>2.0.CO;2
    [38]
    叶家东, 范蓓芬, 杜京朝.人工增雨试验中的反效果问题.应用气象学报, 1998, 9(3):336-344. http://qikan.camscma.cn/jamsweb/article/id/19980348
    [39]
    Orville H D, Koop F J, Farley R D, et al.The Numerical Modeling of Ice-phase Cloud Seeding Effects in a Warm-base Cloud.Cloud Physics and Weather Modification Research Program, WMO/TD, 1989, 269:203-207.
    [40]
    王春明, 叶家东, 魏绍远.气溶胶对暖雨过程影响的数值模拟试验//第12次全云降水物理和人工影响天气科学讨论会.中国气象学会学术会议文集, 1996, 79.
    [41]
    胡志晋, 何观芳.积雨云微物理过程的数值模拟(一)微物理模式.气象学报, 1987, 45(4):465-484. http://www.cnki.com.cn/Article/CJFDTotal-QXXB198704011.htm
    [42]
    邹光源.三维准弹性对流云模式.北京:中国气象科学研究院, 1991.
    [43]
    DeMott P J.Quantitative descriptions of ice formation mechanisms of silver iodide type aerosols.Atmos Res, 1995, 38, 63-99. doi:  10.1016/0169-8095(94)00088-U
  • 加载中
  • -->

Catalog

    Figures(10)

    Article views (3669) PDF downloads(92) Cited by()
    • Received : 2019-07-15
    • Accepted : 2019-10-30
    • Published : 2019-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint