Duan Jing, Lou Xiaofeng, Chen Yong, et al. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta. J Appl Meteor Sci, 2019, 30(6): 677-689. DOI:  10.11898/1001-7313.20190604.
Citation: Duan Jing, Lou Xiaofeng, Chen Yong, et al. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta. J Appl Meteor Sci, 2019, 30(6): 677-689. DOI:  10.11898/1001-7313.20190604.

Aircraft Measurements of Aerosol Vertical Distributions and Its Activation Efficiency over the Pearl River Delta

DOI: 10.11898/1001-7313.20190604
  • Received Date: 2019-07-15
  • Rev Recd Date: 2019-09-30
  • Publish Date: 2019-11-30
  • Based on airborne observations over the Pearl River Delta from 6 flights during 14-27 September 2017, characteristics of low-level vertical distributions (below 3 km) of aerosol and cloud condensation nuclei (CCN) in northern and southern parts of Shenzhen (22 km) is studied. The vertical distribution of aerosol and CCN number concentration and aerosol number concentration spectrum are calculated and analyzed. The weather situation, meteorological conditions and air mass backward trajectory model are used to investigate the aerosol spatial features. Combined with CCN data under different supersaturations conditions, the activation characteristic of aerosol is obtained. Results show that low-level aerosol in Shenzhen varies from 500 to 9000 cm-3. About 50% sample points (≤ 1.5 km) of the aerosol average number concentration are lower than 1000 cm-3. As a coastal city, Shenzhen's aerosol concentration is lower than inland cities under some weather conditions, with a uniform aerosol distribution within the boundary layer. Three aerosol types in Shenzhen are summarized according to the main impacting factors, which is ocean (Ⅰ), land (Ⅲ) and combined ocean-land (Ⅱ). Comparing with type Ⅲ of aerosol, type I has less number concentration and larger size. The aerosol spectrum of pattern I is bimodal distribution, while type Ⅲ is trimodal distribution. The number concentration of type Ⅲ is highest and the particle size type Ⅲ is small. The number concentration of type Ⅱ is between the type Ⅰ and Ⅲ, with a bimodal distribution. Aerosol in northern Shenzhen is higher than that in southern, as northern Shenzhen closed to city cluster of the Pearl River Delta suffering more anthropogenic aerosol impact than that of southern Shenzhen. Activation spectrums of CCN are fitted by 3-flight data including clean and polluted aerosol patterns. Parameters C and k of the empirical function NCCN(S)=CSk are 695 and 0.65 under clean conditions (23 September 2017), and their counterparts under polluted conditions are 4108 and 1.11 (27 September 2017). The aerosol activation efficiency which is the ratio of number concentration between CCN and aerosol is calculated under different supersaturations conditions.
  • Fig. 1  Six-flight paths around Shenzhen Airport in Sep 2017

    Fig. 2  The vertical profile of number concentration and radius for six flights around Shenzhen Airport in Sep 2017

    Fig. 3  24-hour backward tracks for six flights at 400 m, 1200 m and 2000 m heights in Sep 2017

    Fig. 4  The low-level number concentration distribution for six flights around Shenzhen Airport in Sep 2017

    Fig. 5  The aerosol number concentration spectrum (below 1.5 km height) of six flights around Shenzhen Airport in Sep 2017

    Fig. 6  The vertical profile of aerosol number concentration of six flights in southern and northern parts of Shenzhen in Sep 2017

    Fig. 7  The surface PM2.5 mass concentration(a) and low-level (100 m) aerosol number concentration(b) for six flights in southern and northern parts of Shenzhen in Sep 2017

    Fig. 8  Activation spectrums of CCN in 100 m height in Shenzhen in Sep 2017

    Fig. 9  Ratio of number concentration between CCN and aerosol in different supersaturation in Shenzhen in Sep 2017

    Table  1  Synoptic situation and surface weather condition for six flights in Sep 2017

    飞行日期 垂直探测时间 天气形势 温度/℃ 风向 风速/(m·s-1) 相对湿度/%
    09-14 13:34—13:45
    17:27—17:33
    副高南侧,热带气旋北侧偏东气流 28.4 东风 5.1 66
    09-18 12:05—12:13
    14:04—14:11
    高空东北气流,地面弱高压后部 27.0 东东南 5.1 80
    09-23 15:15—15:31
    17:58—18:08
    副高西侧东南气流,地面低槽 27.2 东东南 5.1 87
    09-24 11:52—12:21
    13:59—14:05
    副高西侧东南气流,地面高压后部 25.0 东东南 11.8 92
    09-26 13:28—13:44
    15:22—15:28
    副高南侧偏东气流,地面弱低压场 25.0 东东南 1.5 89
    09-27 11:25—11:31
    13:07—13:18
    副高南侧偏东气流,地面弱脊控制 24.8 西南 1.0 94
    DownLoad: Download CSV

    Table  2  Mean value and standard deviation of aerosol number concentration and its radius (below 1.5 km height) in Sep 2017

    飞行日期 气溶胶数浓度/cm-3 有效半径/μm 体积半径/μm
    09-14 2306±465 0.151±0.011 0.182±0.037
    09-18 5807±1454 0.143±0.010 0.166±0.027
    09-23 927±314 0.136±0.009 0.185±0.025
    09-24 353±307 0.174±0.032 0.315±0.116
    09-26 919±313 0.120±0.012 0.169±0.030
    09-27 5352±3246 0.148±0.010 0.167±0.021
    DownLoad: Download CSV

    Table  3  Comparison of parameters C and k for different continental atmospheric regimes

    观测地点 时间 C/cm-3 k 类型 出处
    澳大利亚帕克斯 1958年春 2000 0.4 大陆型 文献[39]
    美国布法罗 3500 0.9 城市型 文献[40]
    美国圣迭戈 1976年秋 2500 0.7 污染 文献[41]
    巴西亚马逊 2002年秋 2220 1.28 污染 文献[42]
    中国石家庄 2005—2007年 16821 0.71 污染 文献[43]
    韩国济州岛 2006—2009年 4194 0.47 岛屿 文献[44]
    中国内蒙古 2010年 1615 1.42 污染 文献[45]
    中国黄山 2012年秋 8895 0.41 文献[46]
    中国深圳 2017-09-18 3236 1.04 本文
    中国深圳 2017-09-23 695 0.65 本文
    中国深圳 2017-09-27 4108 1.11 本文
    DownLoad: Download CSV
  • [1]
    Andreae M O, Rosenfeld D.Aerosol-cloud-precipitation interactions.Part 1.The nature and sources of cloud-active aerosols.Earth Sci Rev, 2008, 89(1/2):13-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47c3888b0d75f9d6b1c3df665be21e3b
    [2]
    吴兑.华南气溶胶研究的回顾与展望.热带气象学报, 2003, 19(增刊Ⅰ):145-151. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb2003z1016
    [3]
    Li C, Mao J, Lau K H, et al.Characteristics of distribution and seasonal variation of aerosol optical depth in eastern China with MODIS products.Chin Sci Bull, 2003, 48(22):2488-2495. http://cn.bing.com/academic/profile?id=342a178633813ac8a518389330bf32a1&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    李成才, 刘启汉, 毛节泰, 等.利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染.应用气象学报, 2004, 25(6):641-650. http://qikan.camscma.cn/jamsweb/article/id/20040695
    [5]
    Cao J J, Lee S C, Ho K F, et al.Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China.Atmos Environ, 2004, 38(27):4447-4456. doi:  10.1016/j.atmosenv.2004.05.016
    [6]
    Wu D, Tie X, Li C, et al.An extremely low visibility event over the Guangzhou region:A case study.Atmos Environ, 2005, 39(35):6568-6577. doi:  10.1016/j.atmosenv.2005.07.061
    [7]
    吴兑, 廖国莲, 邓雪娇, 等.珠江三角洲霾天气的近地层输送条件研究.应用气象学报, 2008, 19(1):1-9. http://qikan.camscma.cn/jamsweb/article/id/20080102
    [8]
    黄健, 吴兑, 黄敏辉, 等.1954-2004年珠江三角洲大气能见度变化趋势.应用气象学报, 2008, 19(1):61-70. doi:  10.3969/j.issn.1001-7313.2008.01.009
    [9]
    Cheng Y F, Wiedensohler A, Eichler H, et al.Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China.Atmos Environ, 2008, 42(25):6351-6372. doi:  10.1016/j.atmosenv.2008.02.034
    [10]
    林云, 孙向明, 张小丽, 等.深圳市大气能见度与细粒子浓度统计模型.应用气象学报, 2009, 20(2):252-256. http://qikan.camscma.cn/jamsweb/article/id/20090216
    [11]
    谭浩波, 吴兑, 邓雪娇, 等.珠江三角洲气溶胶光学厚度的观测研究.环境科学学报, 2009, 29(6):1146-1155. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200906004
    [12]
    Wu D, Mao J T, Deng X J, et al.Black carbon aerosols and their radiative properties in the Pearl River Delta region.Sci China(Earth Sciences), 2009, 52(8):1152-1163. doi:  10.1007/s11430-009-0115-y
    [13]
    Deng X J, Jou X J, Wu D, et al.Effect of atmospheric aerosol on surface ozone variation over the Pearl River Delta region.Sci China(Earth Sciences), 2011, 54(5):744-752. doi:  10.1007/s11430-011-4172-7
    [14]
    孙天乐, 何凌燕, 黄晓锋, 等.深圳市冬季黑碳气溶胶的粒径分布和混合态特征.科学通报, 2011, 56(21):1703-1710. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201121004
    [15]
    杨红龙, 李磊, 杨溯, 等.深圳城市气溶胶物理光学特性的观测研究.光子学报, 2012, 41(12):1427-1434. http://d.old.wanfangdata.com.cn/Periodical/gzxb201212008
    [16]
    吴兑.近十年中国灰霾天气研究综述.环境科学学报, 2012, 32(2):257-269. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201202001
    [17]
    陈林, 王莉莉, 吉东生, 等.广州亚运会期间鼎湖山站大气污染特征.应用气象学报, 2013, 24(2):151-161. http://qikan.camscma.cn/jamsweb/article/id/20130203
    [18]
    林楚勇, 邓玉娇, 徐剑波, 等.基于MODIS的广东省气溶胶光学厚度时空分布特征分析.热带气象学报, 2015, 31(6):821-826. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201506010
    [19]
    Dusek U, Frank G P, Hildebrandt L, et al.Size matters more than chemistry for cloud-nucleating ability of aerosol particles.Science, 2006, 312(5778):1375-1378. doi:  10.1126/science.1125261
    [20]
    游来光, 马培民, 胡志晋.北方层状云人工降水试验研究.气象科技, 2002, 30(增刊Ⅰ):19-63.
    [21]
    严采蘩, 陈万奎.层状云云滴尺度谱分布及其谱参数计算.应用气象学报, 1990, 1(4):352-359. http://qikan.camscma.cn/jamsweb/article/id/19900452
    [22]
    苏正军, 王广河, 刘卫国, 等.青海省春季降水云的微物理特征分析.应用气象学报, 2003, 14(增刊Ⅰ):36-40. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2003Z1005
    [23]
    姚展予, 濮江平, 刘卫国, 等.飞机探测云物理数据集的建立和应用.应用气象学报, 2004, 15(增刊Ⅰ):68-74. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2004z1010
    [24]
    段婧, 毛节泰.气溶胶与云相互作用的研究进展.地球科学进展, 2008, 23(3):252-261. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200803005
    [25]
    Liu P, Zhao C, Liu P, et al. Aircraft study of aerosol vertical distributions over Beijing and their optical properties.Tellus B, 2009, 61(5):756-767. doi:  10.1111/j.1600-0889.2009.00440.x
    [26]
    马新成, 吴宏议, 嵇磊, 等.北京春季不同天气条件下气溶胶垂直分布特征.气象, 2011, 37(9):1126-1133. http://d.old.wanfangdata.com.cn/Conference/7275898
    [27]
    Duan J, Chen Y, Guo X.Characteristics of aerosol activation efficiency and aerosol and CCN vertical distributions in North China.Acta Meteor Sinica, 2012, 26(5):579-596. doi:  10.1007/s13351-012-0504-6
    [28]
    陈鹏飞, 张蔷, 权建农, 等.北京上空气溶胶浓度垂直廓线特征.环境科学研究, 2012, 25(11):1215-1221. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201211004
    [29]
    李军霞, 李培仁, 陶玥, 等.山西春季层状云系数值模拟及与飞机探测对比.应用气象学报, 2014, 25(1):22-32. http://qikan.camscma.cn/jamsweb/article/id/20140103
    [30]
    Wang W, Ren L H, Zhang Y H, et al.Aircraft measurements of gaseous pollutants and particulate matter over Pearl River Delta in China.Atmos Environ, 2008, 42:6187-6202. doi:  10.1016/j.atmosenv.2008.06.001
    [31]
    游积平, 高建秋, 黄梦宇, 等.珠江三角洲地区大气气溶胶特征的飞机观测分析.热带气象学报, 2015, 31(1):71-77. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201501008
    [32]
    Fitzgerald W J.Marine aerosols:A review.Atmos Environ, 1991, 25(3/4):533-545. http://d.old.wanfangdata.com.cn/Periodical/zgyl201706015
    [33]
    唐孝炎, 张远航, 邵敏.大气环境化学(第二版).北京:高等教育出版社, 2006:275-290.
    [34]
    Qiang Z, Quan J, Tie X, et al.Impact of aerosol particles on cloud formation:Aircraft measurements in China.Atmos Environ, 2011, 45(3):665-672. doi:  10.1016/j.atmosenv.2010.10.025
    [35]
    孙霞, 银燕, 孙玉稳, 等.石家庄地区春季晴、霾天气溶胶观测研究.中国环境科学, 2011, 31(5):705-713. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201105001
    [36]
    李军霞, 银燕, 李培仁, 等.山西夏季气溶胶空间分布飞机观测研究.中国环境科学, 2014, 34(8):1950-1959. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201408006
    [37]
    王维佳, 郭学良, 李宏宇, 等.基于飞机观测的四川盆地初夏云下气溶胶特征.干旱气象, 2018, 36(2):167-175. http://d.old.wanfangdata.com.cn/Periodical/ghqx201802002
    [38]
    孔亚文, 盛立芳, 刘骞, 等.海洋-大气过程对南海气溶胶数浓度谱分布的影响.环境科学, 2016, 37(7):2443-2452. http://d.old.wanfangdata.com.cn/Periodical/hjkx201607005
    [39]
    Twomey S, Squires P.The influence of cloud nucleus population on the microstructure and stability of convective clouds.Tellus, 1959, 11:408-411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.2153-3490.1959.tb00050.x
    [40]
    Kocmond W.Investigation of Warm Fog Properties and Fog Modification Concepts.Annual Report, 1965.
    [41]
    Sax R I, Hudson J G.Continentality of the South Florida summertime CCN aerosol.J Atmos Sci, 1981, 38:1467-1479. doi:  10.1175/1520-0469(1981)038<1467:COTSFS>2.0.CO;2
    [42]
    Martins J A, Fábio L T G, Morales C A, et al.Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season.Meteor Atmos Phys, 2009, 104:83-93. doi:  10.1007/s00703-009-0019-6
    [43]
    段婧.气溶胶对区域云和降水影响的研究.北京:北京大学, 2008.
    [44]
    Kim J H, Yum S S, Shim S, et al.On aerosol hygroscopicity, cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009.Atmos Chem Phys, 2011, 11(24):12627-12645. doi:  10.5194/acp-11-12627-2011
    [45]
    Yang J, Lei H, Lü Y.Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia.Adv Atmos Sci, 2017, 34(8):1003-1016. doi:  10.1007/s00376-017-6219-y
    [46]
    Fang S S, Han Y X, Chen K, et al.Parameterization and comparative evaluation of the CCN number concentration on Mt Huang, China.Atmos Res, 2016, 181:300-311. doi:  10.1016/j.atmosres.2016.07.004
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (3824) PDF downloads(105) Cited by()
    • Received : 2019-07-15
    • Accepted : 2019-09-30
    • Published : 2019-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint