雷达参数 | 多谱勒天气雷达 | C波段连续波雷达 |
探测方式 | 体扫描方式 | 固定式垂直指向 |
探测量程 | 水平460 km,垂直20 km | 150 m~24 km |
时间分辨率 | 6 min | 3 s |
空间分辨率 | 1 km | 30 m |
探测精度 | ≤1 dBZ | ≤1 dBZ |
Citation: | Zhu Shichao, Yuan Ye, Wu Yue, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. DOI: 10.11898/1001-7313.20190605. |
Table 1 Main parameters of C-FMCW radar and Doppler radar
雷达参数 | 多谱勒天气雷达 | C波段连续波雷达 |
探测方式 | 体扫描方式 | 固定式垂直指向 |
探测量程 | 水平460 km,垂直20 km | 150 m~24 km |
时间分辨率 | 6 min | 3 s |
空间分辨率 | 1 km | 30 m |
探测精度 | ≤1 dBZ | ≤1 dBZ |
Table 2 The number of different convections from Jun to Sep during 2013-2016
月份 | 孤立对流云数量 | 对流云数量 | 孤立对流云所占比例 |
6 | 30 | 157 | 19.1% |
7 | 53 | 196 | 27% |
8 | 89 | 228 | 39% |
9 | 24 | 83 | 28.9% |
[1] |
朱士超, 袁野, 吴林林, 等.江淮对流云发生规律及其垂直结构分析.气象, 2016, 43(6):696-704. http://d.old.wanfangdata.com.cn/Periodical/qx201706006
|
[2] |
Rowe A K, Rutledge S A, Lang T J.Investigation of microphysical processes occurring in isolated convection during NAME.Mon Wea Rev, 2011, 139(2):424-443. doi: 10.1175/2010MWR3494.1
|
[3] |
刘治国, 陶健红, 杨建才, 等.冰雹云和雷雨云单体VIL演变特征对比分析.高原气象, 2008, 27(6):1364-1372. http://www.cnki.com.cn/Article/CJFDTotal-GYQX200806021.htm
|
[4] |
岳治国, 牛生杰.洛川地区孤立对流云雷达回波特征分析.陕西气象, 2007(5):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxqx200705001
|
[5] |
朱士超, 银燕, 金莲姬, 等.青藏高原一次强对流过程对水汽垂直输送的数值模拟.大气科学, 2011, 35(6):1057-1068. http://d.old.wanfangdata.com.cn/Periodical/daqikx201106006
|
[6] |
Rosenow A A, Plummer D M, Rauber R M, et al.Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones.J Atmos Sci, 2014, 71(5):1538-1558. doi: 10.1175/JAS-D-13-0249.1
|
[7] |
Hence D A, Houze R A.Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation Radar.J Atmos Sci, 2012, 69(9):2644-2661. doi: 10.1175/JAS-D-11-0323.1
|
[8] |
Marsham J H, Trier S B, Weckwerth T M, et al.Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002.Mon Wea Rev, 2010, 139(1):247-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8bec58eb3b259c8a73af66de224d6fa
|
[9] |
DeMott C A, Rutledge S A.The vertical structure of TOGA COARE convection.Part Ⅰ:Radar echo distributions.J Atmos Sci, 1998, 55(17):2730-2747. https://www.researchgate.net/publication/242771583_The_vertical_structure_of_TOGA_COARE_convection_Part_I_radar_echo_distributions
|
[10] |
Stephens G L, Wood N B.Properties of tropical convection observed by millimeter-wave radar systems.Mon Wea Rev, 2007, 135(3):821-842. doi: 10.1175/MWR3321.1
|
[11] |
Leary C A, Houze R A.The structure and evolution of convection in a tropical cloud cluster.J Atmos Sci, 1979, 36(3):437-457. doi: 10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2
|
[12] |
Ryzhkov A V, Zrnić D S.Rain in shallow and deep convection measured with a polarimetric Radar.J Atmos Sci, 1996, 53(20):2989-2995. doi: 10.1175/1520-0469(1996)053<2989:RISADC>2.0.CO;2
|
[13] |
Stokes G M, Schwartz S E.The atmospheric radiation measurement (ARM) program:Programmatic background and design of the cloud and radiation test bed.Bull Amer Meteor Soc, 1994, 75(7):1201-1221. doi: 10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2
|
[14] |
Lerach D G, Rutledge S A, Williams C R.Vertical structure of convective systems during NAME 2004.Mon Wea Rev, 2009, 138(5):1695-1714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed0c8d5012df1ef29434391e4860f467
|
[15] |
Sekelsky S M, Ecklund W L, Firda J M, et al.Particle size estimation in ice-phase clouds using multifrequency radar reflectivity measurements at 95, 33, and 2.8 GHz.J Appl Meteor, 1999, 38(1):5-28. doi: 10.1175/1520-0450(1999)038<0005:PSEIIP>2.0.CO;2
|
[16] |
Lombardo K A, Colle B A.The spatial and temporal distribution of organized convective structures over the northeast and their ambient conditions.Mon Wea Rev, 2010, 138(12):4456-4474. doi: 10.1175/2010MWR3463.1
|
[17] |
Heymsfield G M, Tian L, Heymsfield A J, et al.Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne doppler Radar.J Atmos Sci, 2010, 67(2):285-308. doi: 10.1175/2009JAS3132.1
|
[18] |
孙豪, 刘黎平, 郑佳锋.不同波段垂直指向雷达功率谱密度对比.应用气象学报, 2017, 28(4):447-457. doi: 10.11898/1001-7313.20170406
|
[19] |
闵晶晶, 刘还珠, 曹晓钟, 等.天津"6.25"大冰雹过程的中尺度特征及成因.应用气象学报, 2011, 22(5):525-536. http://qikan.camscma.cn/jamsweb/article/id/20110502
|
[20] |
阮征, 李淘, 金龙, 等.大气垂直运动对雷达估测降水的影响.应用气象学报, 2017, 28(2):200-208. doi: 10.11898/1001-7313.20170207
|
[21] |
杨有林, 纪晓玲, 张肃诏, 等.基于雷达回波强度面积谱识别降水云类型.应用气象学报, 2018, 29(6):690-700. doi: 10.11898/1001-7313.20180605
|
[22] |
金龙, 阮征, 葛润生, 等.C-FMCW雷达对江淮降水云零度层亮带探测研究.应用气象学报, 2016, 27(3):313-322. doi: 10.11898/1001-7313.20160306
|
[23] |
曹杨, 陈洪滨, 苏德斌.C波段双线偏振天气雷达零度层亮带识别和订正.应用气象学报, 2018, 29(1):84-94. doi: 10.11898/1001-7313.20180108
|
[24] |
袁野, 杨光, 胡雯.利用双多普勒天气雷达分析对流云垂直运动结构试验.应用气象学报, 2007, 18(3):306-313. http://qikan.camscma.cn/jamsweb/article/id/20070352
|
[25] |
石宝灵, 王红艳, 刘黎平.云南多普勒天气雷达网探测冰雹的覆盖能力.应用气象学报, 2018, 29(3):270-281. doi: 10.11898/1001-7313.20180302
|
[26] |
黎惠金, 李向红, 黄芳.广西一次特大暴雨的MCC演变过程及结构特征分析.高原气象, 2013, 32(3):806-817. http://d.old.wanfangdata.com.cn/Periodical/gyqx201303020
|
[27] |
Gallus W A, Snook N A, Johnson E V.Spring and summer severe weather reports over the midwest as a function of convective mode:A preliminary study.Wea Forcasting, 2008, 23(1):101-113. doi: 10.1175/2007WAF2006120.1
|
[28] |
刘黎平, 郑佳锋, 阮征, 等.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果.气象学报, 2015, 73(4):635-647. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201504003
|
[29] |
阮征, 金龙, 葛润生, 等.C波段调频连续波天气雷达探测系统及观测试验.气象学报, 2015, 73(3):577-592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201503014
|
[30] |
李淘, 阮征, 葛润生, 等.激光雨滴谱仪测速误差对雨滴谱分布的影响.应用气象学报, 2016, 27(1):25-34. doi: 10.11898/1001-7313.20160103
|