Liu Xiaolu, Liu Dongsheng, Guo Lijun, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. DOI:  10.11898/1001-7313.20190609.
Citation: Liu Xiaolu, Liu Dongsheng, Guo Lijun, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. DOI:  10.11898/1001-7313.20190609.

The Observational Precision of Domestic MWP967KV Ground-based Microwave Radiometer

DOI: 10.11898/1001-7313.20190609
  • Received Date: 2019-08-05
  • Rev Recd Date: 2019-10-09
  • Publish Date: 2019-11-01
  • MWP967KV ground-based microwave radiometer is an atmospheric microwave remote sensing equipment, which is jointly developed by institutes and universities in China with complete independent intellectual property rights. The microwave profiler includes 21 K-band (22-30 GHz) and 14 V-band (51-59 GHz) microwave channels. The radiometer receives radiation emitted by atmospheric oxygen, water vapor molecules and liquid water in multiple channels. The microwave, infrared and surface meteorological observations are automatically converted into continuous temperature, humidity and liquid profiles using radiative transfer equations and neural networks.In order to apply ground-based microwave radiometer MWP967KV in meteorological services, it is necessary to make comparative test analysis on its detection accuracy. The comparative test is carried out in the southern mountainous area of the Sichuan Basin from August 2015 to March 2018. The ground-based microwave radiometer MWP967KV is located at Yibin County station (28.7°N, 104.57°E) and radiosonde is located at Yibin Station (28.77°N, 104.6°E). The precision of microwave profilers and physical indexes in clear-sky, stratocumulus-sky and altocumulus-sky are analyzed and evaluated using radiosonde data as reference data and combining with ground precipitation data and cloud amount data.Results show that correlation coefficients of temperature, vapor density and relative humidity between radiometer and radiosonde in clear-sky, stratocumulus-sky and altocumulus-sky are 0.9890, 0.9665 and 0.5868, respectively, all passing 0.01 significant test. The correlation is more significant at the bottom than that in the upper air.The detection precision of temperature and relative humidity profile is obviously higher below clouds. The maximum deviation of water vapor density is on the ground and the deviation above 5 km height is close to 0.The fitted temperature profile is good, especially for high temperature. The fitted vapor density profile is also good, especially for low vapor density. However, the fitted relative humidity profile is not satisfying. For samples without temperature inversion layer, the precision of microwave profilers is higher and physical indexes are more accurate.There is no significant difference in correlation coefficient of the balloon drift distance to the deviation between radiometer and radiosonde for temperature, relative humidity and vapor density profiles under a wide range similar weather background, such as clear-sky and cloudy-sky.
  • Fig. 1  The correlation coefficient between radiometer and radiosonde for temperature, relative humidity and vapor density profiles in clear-sky, stratocumulus-sky and altocumulus-sky (the thin solid lines denote 0.01 significant level)

    Fig. 2  The deviation, root mean square error between radiometer and radiosonde for temperature, relative humidity and vapor density in clear-sky

    Fig. 3  The same as in Fig. 2, but for stratocumulus-sky

    Fig. 4  The same as in Fig. 2, but for altocumulus-sky

    Fig. 5  Temperature, relative humidity and vapor density by radiometer and radiosonde in clear-sky

    Fig. 6  The same as in Fig. 5, but for stratocumulus-sky

    Fig. 7  The same as in Fig. 5, but for altocumulus-sky

    Fig. 8  The correlation coefficient of the balloon drift distance to the deviation between radiometer and radiosonde for temperature, relative humidity and vapor density in clear-sky, stratocumulus-sky and altocumulus-sky

    (the thin solid lines denote 0.01 significant level)

    Table  1  Correlation coefficient, mean deviation, root mean square error between radiometer and radiosonde for temperature, relative humidity and vapor density in clear-sky, stratocumulus-sky and altocumulus-sky

    参数 天气类型 相关系数 平均偏差 均方根误差
    温度 晴空 0.9890 -1.5℃ 3.3℃
    层积云 0.9909 -0.6℃ 2.6℃
    高积云 0.9914 -0.3℃ 2.5℃
    相对湿度 晴空 0.7646 12% 21%
    层积云 0.7203 5% 22%
    高积云 0.5868 2% 22%
    水汽密度 晴空 0.9770 0.09 g·m-3 1.37 g·m-3
    层积云 0.9749 0.16 g·m-3 1.23 g·m-3
    高积云 0.9665 0.30 g·m-3 1.55 g·m-3
    DownLoad: Download CSV

    Table  2  Correlation coefficient, mean deviation, root mean square error between radiometer and radiosonde for different parameters in clear-sky, stratocumulus-sky and altocumulus-sky

    间接参数 天气类型 相关系数 平均偏差 均方根误差
    K指数 晴空 0.90 7.0℃ 11.7℃
    层积云 0.85 5.1℃ 9.5℃
    高积云 0.87 4.0℃ 7.4℃
    沙式指数 晴空 0.87 -0.1℃ 3.7℃
    层积云 0.89 -2.5℃ 4.3℃
    高积云 0.83 -0.8℃ 3.6℃
    抬升凝结温度 晴空 0.98 -1.1℃ 2.1℃
    层积云 0.97 -0.6℃ 1.9℃
    高积云 0.94 -0.4℃ 2.2℃
    0℃层高度 晴空 0.95 -452 m 600 m
    层积云 0.95 -182 m 521 m
    高积云 0.92 -43 m 447 m
    -20℃层高度 晴空 0.82 -302 m 634 m
    层积云 0.90 -358 m 557 m
    高积云 0.90 -190 m 456 m
    对流抑制有效位能 晴空 -0.14 -15 J·kg-1 286 J·kg-1
    层积云 0.12 4 J·kg-1 110 J·kg-1
    高积云 -0.07 62 J·kg-1 160 J·kg-1
    湿对流有效位能 晴空 0.68 -82 J·kg-1 401 J·kg-1
    层积云 0.68 15 J·kg-1 203 J·kg-1
    高积云 0.61 -115 J·kg-1 387 J·kg-1
    整层积分水汽含量 晴空 0.98 2.7 kg·m-2 4.6 kg·m-2
    层积云 0.99 2.4 kg·m-2 3.9 kg·m-2
    高积云 0.97 2.8 kg·m-2 4.6 kg·m-2
    DownLoad: Download CSV

    Table  3  Mean deviation, root mean square error between radiometer and radiosonde for temperature, relative humidity and vapor density in clear-sky, stratocumulus-sky and altocumulus-sky without thermal inversion layer

    参数 天气类型 平均偏差 均方根误差
    温度 晴空 -0.4℃ 1.9℃
    层积云 0.1℃ 1.8℃
    高积云 1.2℃ 2.5℃
    相对湿度 晴空 10% 18%
    层积云 4% 18%
    高积云 -1% 18%
    水汽密度 晴空 0.28 g·m-3 1.25 g·m-3
    层积云 0.30 g·m-3 0.73 g·m-3
    高积云 0.77 g·m-3 1.36 g·m-3
    DownLoad: Download CSV

    Table  4  Mean deviation, root mean square error between radiometer and radiosonde for different parameters in clear-sky, stratocumulus-sky and altocumulus-sky without thermal inversion layer

    间接参数 天气类型 平均偏差 均方根误差
    晴空 0.2℃ 2.9℃
    K指数 层积云 3.1℃ 4.9℃
    高积云 0.6℃ 1.2℃
    晴空 -0.6℃ 2.3℃
    沙式指数 层积云 -1.8℃ 3.0℃
    高积云 1.3℃ 2.8℃
    晴空 -1.1℃ 1.1℃
    抬升凝结温度 层积云 -0.7℃ 1.6℃
    高积云 -0.2℃ 0.7℃
    晴空 -186 m 451 m
    0℃层高度 层积云 -234 m 450 m
    高积云 127 m 259 m
    晴空 -2 m 330 m
    -20℃层高度 层积云 -66 m 342 m
    高积云 345 m 500 m
    晴空 274 J·kg-1 293 J·kg-1
    对流抑制有效位能 层积云 55 J·kg-1 78 J·kg-1
    高积云 67 J·kg-1 182 J·kg-1
    晴空 -314 J·kg-1 588 J·kg-1
    湿对流有效位能 层积云 -27 J·kg-1 183 J·kg-1
    高积云 -404 J·kg-1 477 J·kg-1
    晴空 4.1 kg·m-2 4.8 kg·m-2
    整层积分水汽含量 层积云 3.0 kg·m-2 3.1 kg·m-2
    高积云 4.5 kg·m-2 4.7 kg·m-2
    DownLoad: Download CSV
  • [1]
    张培昌, 王振会.大气微波遥感基础.北京:气象出版社, 1995:330-335.
    [2]
    李青, 胡方超, 楚艳丽, 等.北京一地基微波辐射计的观测数据一致性分析和订正实验.遥感技术与应用, 2014, 29(4):547-556.
    [3]
    段英, 吴志会.利用地基遥感方法监测大气中汽态、液态水含量分布特征的分析.应用气象学报, 1999, 10(1):34-40. doi:  10.3969/j.issn.1001-7313.1999.01.005
    [4]
    刘红燕, 王迎春, 王京丽, 等.由地基微波辐射计测量得到的北京地区水汽特性的初步分析.大气科学, 2009, 33(2):388-396. doi:  10.3878/j.issn.1006-9895.2009.02.16
    [5]
    刘建忠, 何晖, 张蔷.不同时次地基微波辐射计反演产品评估.气象科技, 2012, 40(3):332-339. doi:  10.3969/j.issn.1671-6345.2012.03.002
    [6]
    雷恒池, 魏重, 沈志来, 等.微波辐射计探测降雨前水汽和云液水.应用气象学报, 2001, 12(增刊Ⅰ):73-79. doi:  10.3969/j.issn.1001-7313.2001.z1.010
    [7]
    陈添宇, 陈乾, 丁瑞津.地基微波辐射仪监测的张掖大气水汽含量与雨强的关系.干旱区地理, 2007, 30(4):501-506. http://d.old.wanfangdata.com.cn/Periodical/ghqdl200704006
    [8]
    Madhulatha A, Rajeevan M, Ratnam M V, et al.Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations.J Geophys Res Atmos, 2013, 118(1):1-13. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230008751/
    [9]
    Ratnam M V, Santhi Y D, Rajeevan M, et al.Diurnal variability of stability indices observed using radiosonde observations over a tropical station:Comparison with microwave radiometer measurements.Atmos Res, 2013, 124:21-33. doi:  10.1016/j.atmosres.2012.12.007
    [10]
    黄治勇, 徐桂荣, 王晓芳, 等.地基微波辐射资料在短时暴雨潜势预报中的应用.应用气象学报, 2013, 24(5):576-584. doi:  10.3969/j.issn.1001-7313.2013.05.007
    [11]
    刘红燕.三年地基微波辐射计观测温度廓线的精度分析.气象学报, 2011, 69(4):719-728. doi:  10.11676/qxxb2011.063
    [12]
    魏重, 雷恒池, 沈志来.地基微波辐射计的雨天探测.应用气象学报, 2001, 12(增刊Ⅰ):65-72. doi:  10.3969/j.issn.1001-7313.2001.z1.009
    [13]
    张泽娇, 牛生杰, 丁辉.利用亮温资料建立降水临近预报方法的研究.大气科学学报, 2015, 38(2):241-248. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201502011
    [14]
    党张利, 张京朋, 曲宗希, 等.微波辐射计观测数据在降水预报中的应用.干旱气象, 2015, 33(2):340-343. http://d.old.wanfangdata.com.cn/Periodical/ghqx201502020
    [15]
    张文刚, 徐桂荣, 廖可文, 等.降水对地基微波辐射计反演误差的影响.暴雨灾害, 2013, 32(1):70-76. http://d.old.wanfangdata.com.cn/Periodical/hbqx201301010
    [16]
    杨莲梅, 李霞, 赵玲, 等.MP-3000A型地基微波辐射计探测性能及其在乌鲁木齐降水天气中的初步应用.干旱气象, 2013, 31(3):570-578. http://d.old.wanfangdata.com.cn/Periodical/ghqx201303020
    [17]
    茆佳佳, 张雪芬, 王志诚, 等.多型号地基微波辐射计亮温准确性比对.应用气象学报, 2018, 29(6):724-736. doi:  10.11898/1001-7313.20180608
    [18]
    王志诚, 张雪芬, 茆佳佳, 等.不同天气条件下地基微波辐射计探测性能比对.应用气象学报, 2018, 29(3):282-295. doi:  10.11898/1001-7313.20180303
    [19]
    侯叶叶, 刘红燕, 鲍艳松.地基微波辐射计反演水汽密度廓线精度分析.气象科技, 2016, 44(5):702-709;721. doi:  10.3969/j.issn.1671-6345.2016.05.002
    [20]
    车云飞, 马舒庆, 杨玲, 等.云对地基微波辐射计反演湿度廓线的影响.应用气象学报, 2015, 26(2):193-202. doi:  10.11898/1001-7313.20150207
    [21]
    郭丽君, 郭学良.利用地基多通道微波辐射计遥感反演华北持续性大雾天气温、湿度廓线的检验研究.气象学报, 2015, 73(2):368-381. http://d.old.wanfangdata.com.cn/Periodical/qxxb201502012
    [22]
    张文刚, 徐桂荣, 颜国跑, 等.微波辐射计与探空仪测值对比分析.气象科技, 2014, 42(5):737-741. http://d.old.wanfangdata.com.cn/Periodical/qxkj201405002
    [23]
    Ware R, Cimini D, Campos E, et al.Thermodynamic and liquid profiling during the 2010 Winter Olympics.Atmos Res, 2013, 132-133(10):278-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6d0918fe631ee4393162fa45369c089
    [24]
    傅新姝, 谈建国.地基微波辐射计探测资料质量控制方法.应用气象学报, 2017, 28(2):209-217. doi:  10.11898/1001-7313.20170208
    [25]
    鲍艳松, 钱程, 闵锦忠, 等.利用地基微波辐射计资料反演0~10 km大气温湿廓线试验研究.热带气象学报, 2016, 32(2):163-171. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201602003
    [26]
    刘思波, 何文英, 刘红燕, 等.地基微波辐射计探测大气边界层高度方法.应用气象学报, 2015, 26(5):626-635. doi:  10.11898/1001-7313.20150512
    [27]
    王旗, 王周翔, 于翠红.MWP967KV型地基微波辐射计与探空观测数据对比分析.现代农业科技, 2017(7):211-213. http://d.old.wanfangdata.com.cn/Periodical/ahny201707129
    [28]
    雷连发, 马若飞, 朱磊, 等.地基多通道微波辐射计在大气遥感中的应用.火控雷达技术, 2018, 47(1):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkldjs201801003
    [29]
    卢建平, 黄建平, 郭学良, 等.探测大气温湿廓线的35通道微波辐射计设计原理与特点.气象科技, 2014, 42(2):193-197. http://d.old.wanfangdata.com.cn/Periodical/qxkj201402002
    [30]
    雷连发, 卢建平, 朱磊, 等.多通道地基微波辐射计大气遥感.遥感学报, 2014, 18(1):180-191. http://d.old.wanfangdata.com.cn/Periodical/ygxb201401012
    [31]
    朱磊, 卢建平, 雷连发, 等.新型多通道微波辐射计及大气观测分析.火控雷达技术, 2014, 43(1):84-88. http://d.old.wanfangdata.com.cn/Periodical/hkldjs201401021
    [32]
    中国气象局.常规高空气象观测业务规范.北京:气象出版社, 2010.
    [33]
    王英, 熊安元L波段探空仪器换型对高空湿度资料的影响.应用气象学报, 2015, 26(1):76-86. doi:  10.11898/1001-7313.20150108
    [34]
    Bian J C, Vömel H, Duan Y J, et al.Intercomparison of humidity and temperature sensors:GTS1, Vaisala RS80, and CFH.Adv Atmos Sci, 2011, 28(1):139-146. doi:  10.1007/s00376-010-9170-8
    [35]
    蔡淼, 欧建军, 周毓荃, 等.L波段探空判别云区方法的研究.大气科学, 2014, 38(2):213-222. http://d.old.wanfangdata.com.cn/Periodical/daqikx201402002
    [36]
    姚雯, 马颖, 徐文静.L波段电子探空仪相对湿度误差研究及其应用.应用气象学报, 2008, 19(3):356-361. http://qikan.camscma.cn/jamsweb/article/id/20080358
    [37]
    郝民, 龚建东, 王瑞文, 等.中国L波段探空湿度观测资料的质量评估及偏差订正.气象学报, 2015, 73(1):187-199. http://d.old.wanfangdata.com.cn/Periodical/qxxb201501014
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(4)

    Article views (4089) PDF downloads(131) Cited by()
    • Received : 2019-08-05
    • Accepted : 2019-10-09
    • Published : 2019-11-01

    /

    DownLoad:  Full-Size Img  PowerPoint