Li Yan, Wang Zhiwei, Huo Zhiguo, et al. Experiments of water stress on root/shoot growth and yield of summer maize. J Appl Meteor Sci, 2020, 31(1): 83-94. DOI:  10.11898/1001-7313.20200108.
Citation: Li Yan, Wang Zhiwei, Huo Zhiguo, et al. Experiments of water stress on root/shoot growth and yield of summer maize. J Appl Meteor Sci, 2020, 31(1): 83-94. DOI:  10.11898/1001-7313.20200108.

Experiments of Water Stress on Root/Shoot Growth and Yield of Summer Maize

DOI: 10.11898/1001-7313.20200108
  • Received Date: 2019-06-18
  • Rev Recd Date: 2019-09-18
  • Publish Date: 2020-01-31
  • Drought is one of the most important meteorological disasters affecting the growth and production of maize. Dynamic changes and cumulative effect of the drought are closely related to the degree of drought, duration, and growth stages. In order to investigate effects of drought stress on maize, artificial control experiments are carried out in Yuncheng of Shanxi, Xiajin of Shandong and Gucheng of Hebei from 2013 to 2015, in which relative soil moistures are 31%-40%, 41%-50%, 51%-60%, 61%-70% and CK (71%-100%), and the growth stages are seedling-jointing, jointing-tasseling, tasseling-maturity and jointing-maturity. The root/shoot growth and yield of maize are analyzed at different drought levels, effects of rapid water consuming stage and drought maintenance stage under different drought degrees are also analyzed. The growth stage and critical thresholds sensitive to drought stress are determined. Results show that with equivalent drought level, jointing to tasseling stage is the key growth stage affecting the shoot and yield, and the tasseling stage is sensitive to drought stress. The key growth stage of root and root/shoot ratio is from emergence to jointing stage, especially the jointing stage. Under different drought degree, the dry weight of the shoot and root and root/shoot ratio all show down trend at the rapid water consuming stage, which are respectively reduced by 11.7%-67.8%, 35.2%-85.8% and 15%-62% compared to control experiments. At the drought maintenance stage, the dry weight of the shoot is in reduced by 24.3%-89.7%, but the root dry weight and the root/shoot ratio are less sensitive, which respectively decreases by 9.7%-80.8% and 9.6%-62% compared to control experiments. Regression models for drought level and yield reduction rate are established respectively for two drought stages, and are above at 0.05 significant level. The effect of the drought maintenance stage is slightly greater than that of rapid water consuming stage. At the emergence-jointing stage, the relative soil moisture is 60%-62%, which is the critical threshold for the growth of shoot and formation of a reasonable root/shoot ratio. The relative soil moisture is 51%-60% from the emergence to seven-leaf stage, which is conducive to root growth. The relative soil moisture value of 62% is a critical threshold, below which the yield will be influenced by drought. When the relative soil moisture is 31%-40% during the sensitive stage of jointing, tasseling, the yield reduction is more than 70%. When the relative soil moisture is 50%-60% and the duration is less than 8 days, the growth of root and shoot can be restored after rehydration, but the yield is reduced by 1.4%-6.6%. Results can provide basis for rational irrigation and drought dynamic assessment.
  • Fig. 1  The rate of shoot biomass in different growth stages under different water conditions

    Fig. 2  The rate of root biomass in different growth stages under different water conditions

    Fig. 3  The ratio of root/shoot rate in different growth stages under different water conditions

    Table  1  Experimental design of drought stress of maize

    土壤湿度控制水平/% 控制生育时段 试验点 处理
    31~40 出苗-拔节 山西运城 T1
    拔节-抽雄 河北固城 T2
    41~50 出苗-拔节 山东夏津 T3
    拔节-抽雄 山东夏津 T4
    抽雄-成熟 山西运城 T5
    51~60 出苗-拔节 河北固城 T6
    拔节-抽雄 山东夏津 T7
    抽雄-成熟 山西运城 T8
    61~70 出苗-拔节 山西运城 T9
    拔节-抽雄 山东夏津 T10
    拔节-成熟 河北固城 T11
    71~100 全生育期 山西运城
    河北固城
    山东夏津
    CKi
    注:CKi代表处理T1~T11相对应的对照CK1~CK11, i为处理编号, 下同。
    DownLoad: Download CSV

    Table  2  The change of relative soil moisture in different growth stage with different controlled water treatment

    处理 控制水平/% 开始控制 达到控制水平
    时间/d 初始值/% 时间/d 初始值/%
    T1 31~40 0 55 23 39
    T2 15 62 43 40
    T3 41~50 0 57 6 41
    T4 23 61 49 49
    T5 49 66 77 49
    T6 51~60 0 60 0 60
    T7 30 63 37 58
    T8 64 70 70 58
    T9 61~70 0 62 0 62
    T10 34 74 41 68
    T11 29 66 29 66
    DownLoad: Download CSV

    Table  3  The change of relative soil moisture at the drought maintenance stage with different controlled water treatment

    处理 结束时间/d 结束值/% 持续时间/d 下限值/% 出现时间/d 所处的生育期
    T1 45 38 22 38 30 拔节
    T2 71 36 28 31 64 抽雄
    T3 28 50 22 40 6 七叶
    T4 60 49 11 44 53 抽雄
    T5 102 45 25 43 90 乳熟
    T6 36 56 36 51 22 出苗-拔节
    T7 68 60 31 52 60 拔节-抽雄
    T8 87 60 17 58 70 乳熟
    T9 38 70 38 62 0 出苗-拔节
    T10 62 70 21 55 49 抽雄
    T11 71 50 42 50 71 拔节-乳熟
    注:出现时间、结束时间均以距出苗的日数进行统一计算, 记为出苗日数, 0 d代表出苗当天, 下同。
    DownLoad: Download CSV

    Table  4  The corresponding table between the relative soil moisture and the drought grade at the rapid water consuming stage of maize

    处理 开始控制 达到控制水平
    初始值/% 《北方夏玉米干旱等级》标准 干旱等级 初始值/% 《北方夏玉米干旱等级》标准 干旱等级
    T1 55 (50%, 60%] 轻旱 39 (35%, 40%] 重旱
    T2 62 (60%, 100%] 无旱 40 (0, 45%] 特旱
    T3 57 (50%, 60%] 轻旱 40 (40%, 50%] 中旱
    T4 61 (60%, 100%] 无旱 49 (40%, 50%] 重旱
    T5 66 (60%, 70%] 轻旱 49 (45%, 50%] 重旱
    T6 60 (60%, 100%] 无旱 60 (50%, 60%] 轻旱
    T7 63 (60%, 100%] 无旱 58 (50%, 60%] 中旱
    T8 70 (60%, 70%] 轻旱 58 (50%, 60%] 中旱
    T9 62 (60%, 100%] 无旱 62 (60%, 100%] 无旱
    T10 74 (60%, 100%] 无旱 68 (60%, 70%] 轻旱
    T11 66 (60%, 100%] 无旱 66 (60%, 100%] 无旱
    DownLoad: Download CSV

    Table  5  The corresponding table between the relative soil moisture and the drought grade at the drought maintenance stage of maize

    处理 下限值/% 《北方夏玉米干旱等级》标准 干旱等级
    T1 38 (35%, 40%] 重旱
    T2 31 (0, 45%] 特旱
    T3 40 (40%, 50%] 中旱
    T4 44 (40%, 50%] 重旱
    T5 43 (0, 45%] 特旱
    T6 51 (50%, 60%] 轻旱
    T7 52 (50%, 60%] 中旱
    T8 58 (50%, 60%] 中旱
    T9 62 (60%, 100%] 无旱
    T10 55 (50%, 60%] 中旱
    T11 50 (45%, 50%] 重旱
    DownLoad: Download CSV

    Table  6  Effects of drought stress on yield of maize under different water conditions

    控制水平/% 处理 所处的生育期 产量变化率/%
    31~40 T1 拔节 -69.2
    T2 抽雄 -100
    41~50 T3 七叶 -37.6
    T4 抽雄 -53.3
    T5 乳熟 -44.1
    51~60 T6 出苗-拔节 -39.7
    T7 拔节-抽雄 -50.8
    T8 乳熟 -19.5
    61~70 T9 出苗-拔节 0
    T10 抽雄 -6.6
    T11 拔节-乳熟 -1.4
    DownLoad: Download CSV
  • [1]
    国家统计局农村社会经济调查司.中国农村统计年鉴2016.北京:中国统计出版社, 2016.
    [2]
    葛亚宁, 刘洛, 徐新良, 等.近50 a气候变化背景下我国玉米生产潜力时空演变特征.自然资源学报, 2015, 30(5):784-795. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201505007
    [3]
    王培娟, 霍治国, 杨建莹, 等.基于热量指数的东北春玉米冷害指标.应用气象学报, 2019, 30(1):13-24. doi:  10.11898/1001-7313.20190102
    [4]
    郭建平.农业气象灾害监测预测技术研究进展.应用气象学报, 2016, 27(5):620-630. doi:  10.11898/1001-7313.20160510
    [5]
    王春乙, 娄秀荣, 王建林.中国农业气象灾害对作物产量的影响.自然灾害学报, 2007, 16(5):37-43. http://d.old.wanfangdata.com.cn/Periodical/zrzhxb200705006
    [6]
    Anjum S A, Xie X Y, Wang L C, et al.Morphological, physiological and biochemical responses of plants to drought stress.African Journal of Agricultural Research, 2011, 6(9):2026-2032. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003635958
    [7]
    杨艳颖, 毛克彪, 韩秀珍, 等.1949-2016年中国旱灾规律及其对粮食产量的影响.中国农业信息, 2018, 30(5):76-90.
    [8]
    邹旭恺, 张强.近半个世纪我国干旱变化的初步研究.应用气象学报, 2008, 19(6):679-687. http://qikan.camscma.cn/jamsweb/article/id/20080607
    [9]
    王磊.气候变化对我国玉米种植区域划分的影响.长春:吉林大学, 2015.
    [10]
    何奇瑾, 周广胜.我国玉米种植区分布的气候适宜性.科学通报, 2012, 57(4):267-275. http://d.old.wanfangdata.com.cn/Periodical/jlny201414111
    [11]
    张淑杰, 张玉书, 纪瑞鹏, 等.水分胁迫对玉米生长发育及产量形成的影响研究.中国农学通报, 2011, 27(12):68-72. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201112014
    [12]
    吴玮, 景元书, 马玉平, 等.干旱环境下夏玉米各生育时期光响应特征.应用气象学报, 2013, 24(6):723-730. http://qikan.camscma.cn/jamsweb/article/id/20130609
    [13]
    郑江平, 王春乙.低温、干旱并发对玉米苗期生理过程的影响.应用气象学报, 2006, 17(1):119-123. doi:  10.11898/1001-7313.20060118
    [14]
    孟凡超, 刘明, 于吉琳, 等.水分胁迫对玉米产量及干物质分配的影响.江苏农业科学, 2011, 39(3):96-98. http://d.old.wanfangdata.com.cn/Periodical/jsnykx201103034
    [15]
    王云奇, 陶洪斌, 赵丽晓, 等.玉米对水分亏缺的响应.玉米科学, 2014, 22(2):87-92. http://d.old.wanfangdata.com.cn/Periodical/ymkx200804017
    [16]
    Moser S B, Feil B, Jampatong S, et al.Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize.Agricultural Water Management, 2006, 81(1/2):41-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95f30983818edd3c5731943b395101b2
    [17]
    姜鹏, 李曼华, 薛晓萍, 等.不同时期干旱对玉米生长发育及产量的影响.中国农学通报, 2013, 29(36):232-235. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201336042
    [18]
    米娜, 蔡福, 张玉书, 等.不同生育期持续干旱对玉米的影响及其与减产率的定量关系.应用生态学报, 2015, 28(5):1563-1570. http://d.old.wanfangdata.com.cn/Periodical/yystxb201705020
    [19]
    陈家宙, 王石, 张丽丽, 等.玉米对持续干旱的反应及红壤干旱阈值.中国农业科学, 2007, 40(3):532-539. http://d.old.wanfangdata.com.cn/Periodical/zgnykx200703015
    [20]
    石耀辉, 周广胜, 王秋玲, 等.夏玉米对土壤水分持续减少的响应及其转折点阈值分析.生态学报, 2018, 38(8):2896-2905. http://d.old.wanfangdata.com.cn/Periodical/stxb201808027
    [21]
    薛昌颖, 刘荣花, 马志红.黄淮海地区夏玉米干旱等级划分.农业工程学报, 2014, 30(16):147-156. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201416020
    [22]
    宋艳玲, 王建林, 田靳峰, 等.气象干旱指数在东北春玉米干旱监测中的改进.应用气象学报, 2019, 30(1):25-34. doi:  10.11898/1001-7313.20190103
    [23]
    马玉平, 霍治国, 王培娟, 等.中国农业气象模式(CAMM1.0)构建与应用.应用气象学报, 2019, 30(5):528-542. doi:  10.11898/1001-7313.20190502
    [24]
    Farooq M, Wahid A, Kobayashi N, et al.Plant drought stress:Effects, mechanisms and management.Agronomy for Sustainable Development, 2009, 29(1):185-212. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232174672/
    [25]
    刘荣花, 薛昌颖, 方文松, 等.QX/T 260-2015.北方夏玉米干旱等级.北京:中国气象局, 2015.
    [26]
    汪扩军.农业气象业务.北京:气象出版社, 2013.
    [27]
    魏瑞江,宋迎波,王鑫.基于气候适宜度的玉米产量动态预报方法.应用气象学报,2009,20(5):622-626. http://qikan.camscma.cn/jamsweb/article/id/20090514
    [28]
    田树云, 文仁来, 何静丹, 等.广西主栽玉米品种苗期干旱胁迫及复水补偿效应研究.西南农业学报, 2016, 29(3):479-485. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201603003
    [29]
    王峰, 李萍, 熊昱, 等.不同干旱程度对夏玉米生长及产量的影响.节水灌溉, 2017(2):1-4. http://d.old.wanfangdata.com.cn/Periodical/jsgg201702001
    [30]
    张旭东, 王智威, 韩清芳, 等.玉米早期根系构型及其生理特性对土壤水分的响应.生态学报, 2016, 36(10):2969-2977. http://d.old.wanfangdata.com.cn/Periodical/stxb201610021
    [31]
    李彪, 孟兆江, 段爱旺, 等.调亏灌溉对夏玉米根冠生长关系的调控效应.干旱地区农业研究, 2018, 36(5):169-175. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201805025
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(6)

    Article views (5084) PDF downloads(73) Cited by()
    • Received : 2019-06-18
    • Accepted : 2019-09-18
    • Published : 2020-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint