Mei Haixia, Liang Xinzhong, Zeng Mingjian, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. DOI:  10.11898/1001-7313.20200111.
Citation: Mei Haixia, Liang Xinzhong, Zeng Mingjian, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. DOI:  10.11898/1001-7313.20200111.

Raindrop Size Distribution Characteristics of Nanjing in Summer of 2015-2017

DOI: 10.11898/1001-7313.20200111
  • Received Date: 2019-07-06
  • Rev Recd Date: 2019-09-18
  • Publish Date: 2020-01-31
  • It's of great significance to study features of raindrop size distribution (DSD) during different stages of the summer monsoon for understanding the precipitation mechanism, which is regarded as credible reference to improve and refine ainfall retrieval algorithms based on satellite and radar observations and the parameterization of microphysics scheme in numerical model. Characteristics of DSD during summer (June to August) of 2015-2017 are investigated using measurements from a ground-based disdrometer in Nanjing. Results show different micro and macro precipitation characteristics among three stages of summer monsoon. Precipitation before Meiyu is characterized by the highest (among the three stages) mean mass-weighted raindrop diameter, average minutely rainfall rate, and intense minutely and strong hourly rainfall occurrences. Despite generally weak convection intensity in this stage, the persistent support from large-scale synoptic conditions, sufficient condensation and the weakened influence from evaporation, breaking-up and entrainment processes are beneficial to produce large raindrops and improve precipitation efficiency. In contrast, precipitation after Meiyu is identified with the greatest frequency of large raindrop and extreme minutely rainfall occurrences. This is mainly caused by severe convective activities under hot and humid atmospheric conditions. Stronger convection is also associated with higher frequency of smaller raindrops. In pace with the northward advancement of the summer monsoon, the convection intensity enhances gradually and breaking-up processes of raindrops heighten as well, which lead to higher ratio of small-raindrop samples with the largest value during the stage after Meiyu. From many aspects of these raindrop and rainfall characteristics, convective precipitation during Meiyu is inferior comparing to that in the other two stages. However, rainfall rates are highest and raindrops are largest during stratiform precipitation due to sufficient coalescence processes under favorable synoptic forcing conditions. The concentration of small raindrops is usually high but the ratio of small raindrops is the lowest in this stage. Among three stages, the binomial relationship between the shape index and slope parameter also differ significantly, depending on the value of the shape index. Compared with Meiyu of 2009-2011, the frequency of intense rainfall occurrence and its contribution to total precipitation decrease while those for weak rainfall increase in terms of both minutely and hourly rainfall. Simultaneously, the binomial relationship of the shape index and slope parameter changes significantly as well.
  • Fig. 1  Minute convective rainfall frequency and the contribution to the total precipitation in different stages

    (calculated at 0.083 mm·min-1 interval)

    Fig. 2  Hourly rainfall frequency in different stages

    (at 2 mm interval)

    Fig. 3  Composite raindrop spectras of the averaged and the fitting in different stages

    (the circle denotes the averaged measurement, the line denotes the fitting)(a)convective rainfall, (b)stratiform rainfall

    Fig. 4  Frequency distribution of Dm in different stages

    (calculated at 0.2 mm interval) (a)convective rainfall, (b)stratiform rainfall

    Fig. 5  Scatter plot of lgNw versus Dm for convective rainfall and stratiform rainfall

    Fig. 6  Relationship of μ-Λ

    Table  1  Minute rainfall frequency and the contribution to the total precipitation of different rain intensity during Meiyu period

    年份 降水频率/% 降水贡献/%
    弱降水 中等降水 强降水 弱降水 中等降水 强降水
    2009—2011 75.00 11.00 14.00 24.00 15.00 61.00
    2015—2017 84.28 8.42 7.30 28.30 16.11 55.59
    注:弱降水、中等降水和强降水分别对应R < 0.083 mm·min-1, 0.083 mm·min-1R < 0.17 mm·min-1, R≥0.17 mm·min-1
    DownLoad: Download CSV

    Table  2  Hourly accumulated rainfall frequency and the contribution to the total precipitation of different rain intensity during Meiyu period

    年份 降水频率/% 降水贡献/%
    弱降水 中等降水 强降水 弱降水 中等降水 强降水
    2009—2011 82.1 11.73 6.2 25.5 32.3 42.2
    2015—2017 85.9 11.08 3.0 38.8 35.4 25.9
    注:弱降水、中等降水和强降水分别对应小时累积降水量小于5 mm, 大于等于5 mm且小于15 mm, 大于等于15 mm。
    DownLoad: Download CSV

    Table  3  Statistic parameters of minute rainfall in different stages

    时段 降水类型 样本量 样本比例/% 平均降水率/ (mm·min-1) 累积降水量/mm 降水贡献/%
    梅雨开始前 对流降水 1430 23.65 0.417 595.93 87.96
    层云降水 1948 32.22 0.0258 50.41 7.44
    梅雨期 对流降水 2088 13.54 0.301 628.16 67.92
    层云降水 6585 42.70 0.0318 209.94 22.70
    梅雨结束后 对流降水 1552 16.53 0.415 644.32 82.49
    层云降水 3362 35.82 0.0247 83.15 10.65
    DownLoad: Download CSV

    Table  4  The mean value, standard deviation and skewness of Dm and lgNw in different stages

    雨滴特征 降水类型 统计参数 梅雨开始前 梅雨期 梅雨结束后 夏季平均
    Dm/mm 对流降水 平均值 1.92 1.76 1.84 1.83
    标准差 0.47 0.50 0.66 0.55
    偏度 1.68 2.97 1.6 2.06
    层云降水 平均值 1.26 1.30 1.21 1.27
    标准差 0.39 0.31 0.38 0.35
    偏度 1.02 0.44 0.66 0.59
    lgNw/(m-3·mm-1) 对流降水 平均值 3.73 3.79 3.84 3.79
    标准差 0.32 0.37 0.48 0.40
    偏度 -1.77 -1.45 -0.60 -0.96
    层云降水 平均值 3.49 3.46 3.56 3.49
    标准差 0.55 0.47 0.67 0.55
    偏度 0.33 0.39 0.14 0.34
    DownLoad: Download CSV

    Table  5  Comparison in mean value and standard deviation of rainfall parameters among references

    雨滴参数 降水类型 统计参数 浦口 文献[25] 文献[26]
    Dm/mm 对流降水 平均值 1.83 1.67 1.41
    标准差 0.55 0.32 0.24
    层云降水 平均值 1.27 1.18 1.16
    标准差 0.35 0.31 0.27
    lgNw/(m-3·mm-1) 对流降水 平均值 3.79 3.91 4.37
    标准差 0.4 0.29 0.38
    层云降水 平均值 3.49 3.57 3.78
    标准差 0.55 0.54 0.45
    DownLoad: Download CSV

    Table  6  The mean value, standard deviation of μ and Λ from different stages

    雨滴参数 降水类型 统计参数 梅雨开始前 梅雨期 梅雨结束后 夏季平均
    μ 对流降水 平均值 2.24 3.09 4.36 3.24
    标准差 8.40 4.79 6.27 6.49
    层云降水 平均值 4.02 3.91 5.5 4.38
    标准差 5.68 5.81 6.82 6.13
    Λ/mm-1 对流降水 平均值 3.23 4.29 4.96 4.2
    标准差 2.29 3.13 4.7 3.56
    层云降水 平均值 7.36 6.55 9.21 7.43
    标准差 7.45 5.87 9.48 7.41
    DownLoad: Download CSV
  • [1]
    Ulbrich C W.Natural variations in the analytical form of the raindrop size distribution.J Climate Appl Meteor, 1983, 22(10):1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [2]
    Tokay A, Short D A.Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds.J Appl Meteorol, 1996, 35(3):355-371. doi:  10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
    [3]
    Krishna U V M, Reddy K K, Seela B K, et al.Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau islands in the Western Pacific Ocean.Atmos Res, 2016, 174/175:41-51. doi:  10.1016/j.atmosres.2016.01.013
    [4]
    杨俊梅, 陈宝君, 韩永翔, 等.山西省不同地区雨滴谱的统计特征.气象科学, 2016, 36(1):88-95. http://d.old.wanfangdata.com.cn/Periodical/qxkx201601011
    [5]
    宋灿, 周毓荃, 吴志会.雨滴谱垂直演变特征的微雨雷达观测研究.应用气象学报, 2019, 30(4):479-490. doi:  10.11898/1001-7313.20190408
    [6]
    栾天, 郭学良, 张天航.不同降水强度对PM2.5的清除作用及影响因素.应用气象学报, 2019, 30(3):279-291. doi:  10.11898/1001-7313.20190303
    [7]
    赵平, 袁溢.2014年7月14日高原低涡降水过程观测分析.应用气象学报, 2017, 28(5):532-543. doi:  10.11898/1001-7313.20170502
    [8]
    岳治国, 梁谷.陕西渭北一次降雹过程的粒子谱特征分析.高原气象, 2018, 37(6):1716-1724. http://d.old.wanfangdata.com.cn/Periodical/gyqx201806022
    [9]
    Radhakrishna B, Rao T N, Rao D N, et al.Spatial and seasonal variability of raindrop size distributions in southeast India.J Geophys Res, 2009, 114(D04203), DOI: 10.1029/2008JD011-226.
    [10]
    Radhakrishna B, Rao T N.Differences in cyclonic raindrop size distribution from southwest to northeast monsoon season and from that of noncyclonic rain.J Geophys Res Atmos, 2010, 115(D16205), DOI: 10.1029/2009JD013355.
    [11]
    Chakravarty K, Raj P E, Bhattacharya A, et al.Microphysical characteristics of clouds and precipitation during pre-monsoon and monsoon period over a tropical Indian station.J Atmos Sol-Terr Phys, 2013, 94:28-33. doi:  10.1016/j.jastp.2012.12.016
    [12]
    Chakravarty K, Raj P E.Raindrop size distributions and their association with characteristics of clouds and precipitation during monsoon and post-monsoon periods over a tropical Indian station.Atmos Res, 2013, 124:181-189. doi:  10.1016/j.atmosres.2013.01.005
    [13]
    Tang Q, Xiao H, Guo C, et al.Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China.Atmos Res, 2014, 135/136:59-75. doi:  10.1016/j.atmosres.2013.08.003
    [14]
    陈磊, 陈宝君, 杨军, 等.2009-2010年梅雨锋暴雨雨滴谱特征.大气科学学报, 2013, 36(4):481-488. doi:  10.3969/j.issn.1674-7097.2013.04.011
    [15]
    Chen B, Yang J, Pu J.Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China.J Meteorol Soc Japan, 2013, 91(2):215-227. doi:  10.2151/jmsj.2013-208
    [16]
    贺铮, 徐邦琪, 高迎侠.BCC S2S模式对亚洲夏季风准双周振荡预报评估.应用气象学报, 2018, 29(4):436-448. doi:  10.11898/1001-7313.20180405
    [17]
    章大全, 郑志海, 陈丽娟, 等.10-30 d延伸期可预报性与预报方法研究进展.应用气象学报, 2019, 30(4):416-430. doi:  10.11898/1001-7313.20190403
    [18]
    祝从文, 刘伯奇, 左志燕, 等.东亚夏季风次季节变化研究进展.应用气象学报, 2019, 30(4):401-415. doi:  10.11898/1001-7313.20190402
    [19]
    汪会.华南和江淮地区夏季风期间降水和对流的一些统计特征和个例研究.北京:中国气象科学研究院, 2014.
    [20]
    许焕斌.强对流云物理及其应用.北京:气象出版社, 2012.
    [21]
    Rosenfeld D, Wolff D B, Atlas D.General probability-matched relations between radar reflectivity and rain rate.J Appl Meteorol Climatol, 1993, 32(1):50-72.
    [22]
    Ryzhkov A V, Giangrande S E, Melnikov V M, et al.Calibration issues of dual-polarization radar measurements.J Atmos Ocean Tech, 2005, 22(8):1138-1155. doi:  10.1175/JTECH1772.1
    [23]
    阮征, 李淘, 金龙, 等.大气垂直运动对雷达估测降水的影响.应用气象学报, 2017, 28(2):200-208. doi:  10.11898/1001-7313.20170207
    [24]
    You S, Tan R T, Kawakami R, et al.Raindrop Detection and Removal from Long Range Trajectories.ACCV 2014.Lecture Notes in Computer Science, Vol 9004, 2015:569-585. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214920398/
    [25]
    金祺, 袁野, 刘慧娟, 等.江淮之间夏季雨滴谱特征分析.气象学报, 2015, 73(4):778-788. http://d.old.wanfangdata.com.cn/Periodical/qxxb201504013
    [26]
    Wen L, Zhao K, Zhang G, et al.Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data.J Geophy Res Atmos, 2016, 121:2265-2282. doi:  10.1002/2015JD024160
    [27]
    曾培培, 髙太长, 刘西川, 等.2014-2015年南京春夏两季降水微物理特征分析.气象与减灾研究, 2016, 39(4):277-282. http://d.old.wanfangdata.com.cn/Periodical/jxqxkj201604005
    [28]
    Löfflermang M, Joss J.An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors.J Atmos Ocean Tech, 2000, 17(2):130-139. doi:  10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
    [29]
    Battaglia A, Rustemeier E, Tokay A, et al.PARSIVEL Snow Observations:A critical assessment.J Atmos Ocean Tech, 2010, 27(2):333-344. doi:  10.1175/2009JTECHA1332.1
    [30]
    Bringi V N, Chandrasekar V, Hubbert J, et al.Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis.J Atmos Sci, 2003, 60(2):354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [31]
    Zhang G, Vivekanandan J, Brandes E A, et al.The shape slope relation in observed gamma raindrop size distributions:Statistical error or useful information.J Atmos Ocean Tech, 2003, 20(8):1106-1119. doi:  10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2
    [32]
    周佰铨.基于大尺度环流型的我国江淮流域夏季降水变化归因及情景预估研究.北京:中国气象科学研究院, 2018.
    [33]
    丁一汇, 司东, 柳艳菊, 等.论东亚夏季风的特征、驱动力与年代际变化.大气科学, 2018, 42(3):90-115. http://d.old.wanfangdata.com.cn/Periodical/daqikx201803007
    [34]
    陈丽娟, 赵俊虎, 顾薇, 等.汛期我囯主要雨季进程成因及预测应用进展.应用气象学报, 2019, 30(4):385-400. doi:  10.11898/1001-7313.20190401
    [35]
    李怡.亚非夏季风系统的气候特征及其年代际变率研究.北京:中国气象科学研究院, 2017.
    [36]
    史宏晓.江淮地区夏季降水年代际异常时空特征及成因分析.科技风, 2019, 3:245-247. http://d.old.wanfangdata.com.cn/Periodical/kjf201903218
    [37]
    孙继松, 戴建华, 何立富, 等.强对流天气预报的基本原理与技术方法.北京:气象出版社, 2014.
    [38]
    Testud J.The concept of "normalized" distribution to describe raindrop spectra:A tool for cloud physics and cloud remote sensing.J Appl Meteorol, 2001, 40(40):1118-1140.
    [39]
    Marzano F S, Cimini D, Montopoli M, et al.Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data.Atmos Res, 2010, 97(4):583-600. doi:  10.1016/j.atmosres.2010.03.019
    [40]
    汪会.江淮地区降水和对流特征以及MCS天气条件:梅雨期与梅雨前、后期对比分析.北京:中国气象科学研究院, 2011.
    [41]
    牛生杰.云降水物理研究.北京:气象出版社, 2012.
    [42]
    盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2013.
    [43]
    Chu Y H, Su C L.An Investigation of the slope-shape relation for Gamma raindrop size distribution.J Appl Meteorol Climatol, 2008, 47(10):2531-2544. doi:  10.1175/2008JAMC1755.1
    [44]
    Munchak S J, Tokay A.Retrieval of raindrop size distribution from simulated dual-frequency radar measurements.J Appl Meteorol Climatol, 2008, 47(1):223-239. doi:  10.1175/2007JAMC1524.1
    [45]
    Vivekanandan J, Zhang G, Brandes E.Polarimetric radar estimators based on a constrained Gamma drop size distribution model.J Appl Meteorol, 2004, 43(2):217-230. doi:  10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2
    [46]
    Chen B, Hu Z, Liu L, et al.Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX-Ⅲ.J Geophy Res Atmos, 2017, 122(20), DOI: 10.1002/2017JD027233.
    [47]
    Brandes E A, Zhang G, Vivekanandan J.An evaluation of a drop distribution-based polarimetric radar rainfall estimator.J Appl Meteorol, 2003, 42(5), 652-660. doi:  10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2
    [48]
    张洪胜, 何宏让, 张云, 等.南京地区降水雨滴谱拟合模型的参数特征分析.气象与环境科学, 2017, 40(3):71-78. http://d.old.wanfangdata.com.cn/Periodical/hnqx201703012
    [49]
    王梦瑶.基于不同天气型和污染背景的江淮与华南地区暖季降水雨滴谱分布特征研究.南京:南京大学, 2019.
    [50]
    Wang F, Guo J, Wu Y, et al.Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China.Atmos Environ, 2014, 84(1):122-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c1e07a22a91768ad498aeeb2039d88f
    [51]
    Michibata T, Kawamoto K, Takemura T.The effects of aerosols on water cloud microphysics and macrophysics based on satellite-retrieved data over East Asia and the North Pacific. Atmos Chem Phys, 14, 21(2014-11-13), 2014, 14(21):11935-11948.
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(6)

    Article views (5212) PDF downloads(142) Cited by()
    • Received : 2019-07-06
    • Accepted : 2019-09-18
    • Published : 2020-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint