[1]
|
|
[2]
|
Rakov V A, Uman M A.Lightning:Physics and Effects.New York:Cambridge University Press, 2003.
|
[3]
|
|
[4]
|
Shindo T.Lightning striking characteristics to tall structures. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13(7):938-947. doi: 10.1002/tee.22649
|
[5]
|
Zhang Y, Lü W, Chen S, et al.A review of advances in lightning observations during the past decade in Guangdong, China. J Meteor Res, 2016, 30(5):800-819, DOI: 10.1007/s13351-016-6928-7.
|
[6]
|
Lu W, Chen L, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. J Geophys Res Atmos, 2012, 117, D19211, DOI: 10.1029/2012JD018035.
|
[7]
|
Chen L, Zhang Y, Lu W, et al.Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J Atmos Oceanic Technol, 2012, 29(12):1835-1844. doi: 10.1175/JTECH-D-12-00028.1
|
[8]
|
Lu W, Chen L, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader. Geophys Res Lett, 2013, 40:5531-5535. doi: 10.1002/2013GL058060
|
[9]
|
|
[10]
|
Gao Y, Lu W, Ma Y, et al.Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou. Atmos Res, 2014, 149:193-203. doi: 10.1016/j.atmosres.2014.06.008
|
[11]
|
|
[12]
|
|
[13]
|
Chen L, Lu W, Zhang Y, et al.Optical progression characteristics of an interesting natural downward bipolar lightning flash. J Geophys Res Atmos, 2015, 120(2):708-715. doi: 10.1002/2014JD022463
|
[14]
|
|
[15]
|
|
[16]
|
|
[17]
|
|
[18]
|
Lu W, Gao Y, Chen L, et al.Three-dimensional propagation characteristics of the leaders in the attachment process of a downward negative lightning flash. J Atmos Sol Terr Phys, 2015, 136:23-30. doi: 10.1016/j.jastp.2015.07.011
|
[19]
|
|
[20]
|
Qi Q, Lu W, Ma Y, et al.High-speed video observations of the fine structure of a natural negative stepped leader at close distance. Atmos Res, 2016, 178/179:260-267. doi: 10.1016/j.atmosres.2016.03.027
|
[21]
|
Lu W, Qi Q, Ma Y, et al.Two basic leader connection scenarios observed in negative lightning attachment process. High Voltage, 2016, 1(1):11-17. doi: 10.1049/hve.2016.0002
|
[22]
|
|
[23]
|
Zhang C, Lu W, Chen L, et al.Influence of the Canton Tower on the cloud-to-ground lightning in its vicinity. J Geophys Res Atmos, 2017, 122(11):5943-5954. doi: 10.1002/2016JD026229
|
[24]
|
|
[25]
|
Qi Q, Lyu W, Wu B, et al.Three-dimensional optical observations of an upward lightning triggered by positive cloud-to-ground lightning. Atmos Res, 2018, 214:275-283. doi: 10.1016/j.atmosres.2018.08.003
|
[26]
|
|
[27]
|
Wu B, Lyu W, Qi Q, et al.Synchronized two-station optical and electric field observations of multiple upward lightning flashes triggered by a 310-kA +CG Flash. J Geophys Res Atmos, 2019, 124(2):1050-1063. doi: 10.1029/2018JD029378
|
[28]
|
|
[29]
|
Chen L, Lyu W, Zhang Y, et al.Correlated luminosity and magnetic field peaks produced by canton tower-strokes. Atmos Res, 2019, 218:59-69. doi: 10.1016/j.atmosres.2018.11.008
|
[30]
|
Su Z, Lyu W, Chen L, et al.Shielding effect of surrounding buildings on the lightning-generated vertical electric field at the top of a tall building. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(1):174-182, DOI: 10.1109/TEMC.2018.2790346.
|
[31]
|
|
[32]
|
Wu B, Lyu W, Qi Q, et al.High-speed video observations of recoil leaders producing and not producing return strokes in a Canton-Tower upward flash. Geophys Res Lett, 2019, 46:8546-8553. doi: 10.1029/2019GL083862
|
[33]
|
Qi Q, Lyu W, Ma Y, et al.High-speed video observations of natural lightning attachment process with framing rates up to half a million frames per second. Geophys Res Lett, 2019, 46:12580-12587. doi: 10.1029/2019GL085072
|
[34]
|
|
[35]
|
|
[36]
|
|
[37]
|
Jiang R, Qie X, Wu Z, et al.Characteristics of upward lightning from a 325-m-tall meteorology tower. Atmos Res, 2014, 149:111-119. doi: 10.1016/j.atmosres.2014.06.007
|
[38]
|
Jiang R, Wu Z, Qie X, et al.High-speed video evidence of a dart leader with bidirectional development. Geophys Res Lett, 2014, 41(14):5246-5250. doi: 10.1002/2014GL060585
|
[39]
|
Jiang R, Sun Z, Wu Z, et al.Concurrent upward lightning flashes from two towers. Atmospheric and Oceanic Science Letter, 2014, 7(3):260-264. doi: 10.1080/16742834.2014.11447171
|
[40]
|
Wang Z, Qie X, Jiang R, et al.High-speed video observation of stepwise propagation of a natural upward positive leader. J Geophys Res Atmos, 2016, 121(24):14307-14315. doi: 10.1002/2016JD025605
|
[41]
|
Yuan S, Jiang R, Qie X, et al.Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions. J Geophys Res Atmos, 2017, 122(22):12093-12105. doi: 10.1002/2017JD027198
|
[42]
|
Yuan S, Jiang R, Qie X, et al.Development of side bidirectional leader and its effect on channel branching of the progressing positive leader of lightning. Geophys Res Lett, 2019, 46(3):1746-1753. doi: 10.1029/2018GL080718
|
[43]
|
Qiu Z, Gao H, Yang Y.Lightning Parameters Measurement Systems and Instrumentation on Meteorological Gradient Observation Tower in Shenzhen China.2015 International Symposium on Lightning Protection (XⅢ SIPDA), Balneário, Camboriú, Brazil, 2015.
|
[44]
|
Yang Y, Qiu Z, Qin Z, et al.Preliminary Results of Lightning Current Measurements at the 356 m High Shenzhen Meteorological Gradient Tower in South China.34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2018.
|
[45]
|
Gao Y, Chen M, Qin Z, et al.The spatial evolution of upward positive stepped leaders initiated from a 356-m-tall tower in southern China. J Geophys Res Atmos, 2020, 125(2), DOI: 10.1029/2019JD031508.
|
[46]
|
Wang D, Takagi N, Gamerota W R, et al.Initiation processes of return strokes in rocket-triggered lightning. J Geophys Res Atmos, 2013, 118(17):9880-9888. doi: 10.1002/jgrd.50766
|
[47]
|
马颖, 吕伟涛, 杨俊, 等.一种闪电通道自动观测系统: 201911-003352.1.2019-10-22.
|
[48]
|
吕伟涛, 张阳, 马颖, 等.全视野闪电事件观测系统及方法: ZL201110066285.5.2013-09-11.
|
[49]
|
Lv W, Ma Y, Zhang Y, et al.Total-sky Lightning Event Observation System and Method: US Patent, US 8902312 B2.2014-12-02.
|
[50]
|
|
[51]
|
Shi D, Zheng D, Zhang Y, et al.Low-frequency E-field Detection Array (LFEDA)-Construction and preliminary results. Science China(Earth Sciences), 2017, 60(10):1896-1908. doi: 10.1007/s11430-016-9093-9
|
[52]
|
Eriksson A.The incidence of lightning strikes to power lines. IEEE Transactions on Power Delivery, 1987, 2(3):859-870. doi: 10.1109/TPWRD.1987.4308191
|
[53]
|
Dellera L, Garbagnati E.Lightning stroke simulation by means of the leader progression model.I.Description of the model and evaluation of exposure of free-standing structures. IEEE Transactions on Power Delivery, 1990, 5(4):2009-2022. doi: 10.1109/61.103696
|
[54]
|
Rizk F A.Modeling of lightning incidence to tall structures.I.Theory. IEEE Transactions on Power Delivery, 1994, 9(1):162-171. doi: 10.1109/61.277673
|
[55]
|
Mazur V, Ruhnke L, Bondiou-Clergerie A, et al.Computer simulation of a downward negative stepped leader and its interaction with a ground structure. J Geophys Res Atmos, 2000, 105(D17):22361-22369. doi: 10.1029/2000JD900278
|
[56]
|
Ait-Amar S, Berger G.Lightning Interception on Elevated Building.5th WSEAS Int Conf on Power Systems & EMC, Corfu, Greece, 2005.
|
[57]
|
Kostinskiy A Y, Syssoev V, Bogatov N, et al.Observations of the connection of positive and negative leaders in meter-scale electric discharges generated by clouds of negatively charged water droplets. J Geophys Res Atmos, 2016, 121(16):9756-9766. doi: 10.1002/2016JD025079
|
[58]
|
|
[59]
|
Lu W, Wang D, Takagi N, et al.Characteristics of the optical pulses associated with a downward branched stepped leader. J Geophys Res Atmos, 2008, 113, D21206, DOI: 10.1029/2008JD010231.
|
[60]
|
Biagi C, Jordan D, Uman M, et al.High-speed video observations of rocket-and-wire initiated lightning. Geophys Res Lett, 2009, 36, L15801, DOI: 10.1029/2009GL038525.
|
[61]
|
Hill J, Uman M, Jordan D.High-speed video observations of a lightning stepped leader. J Geophys Res Atmos, 2011, 116, D16117, DOI: 10.1029/2011JD015818.
|
[62]
|
Petersen D A, Beasley W H.High-speed video observations of a natural negative stepped leader and subsequent dart-stepped leader. J Geophys Res Atmos, 2013, 118(21):12110-12119. doi: 10.1002/2013JD019910
|
[63]
|
Tran M D, Rakov V A, Mallick S.A negative cloud-to-ground flash showing a number of new and rarely observed features. Geophys Res Lett, 2014, 41(18):6523-6529. doi: 10.1002/2014GL061169
|
[64]
|
Warner T.Upward Leader Development from Tall Towers in Response to Downward Stepped Leader.30th International Conference on Lightning Protection(ICLP), Cagliari, Italy, 2010.
|
[65]
|
Saba M, Paiva A, Schumann C, et al.Lightning attachment process to common buildings. Geophys Res Lett, 2017, 44(9):4368-4375. doi: 10.1002/2017GL072796
|
[66]
|
Lafkovici A, Hussein A M, Janischewskyj W, et al.Evaluation of the performance characteristics of the North American Lightning Detection Network based on tall-structure lightning. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(3):630-641. doi: 10.1109/TEMC.2008.927922
|
[67]
|
Kazazi S, Hussein A, Liatos P.Evaluation of NALDN performance characteristics in the vicinity of the CN Tower based on tall-structure lightning. Electric Power Systems Research, 2017, 153:19-31. doi: 10.1016/j.epsr.2016.12.005
|
[68]
|
Baba Y, Rakov V A.Lightning strikes to tall objects:Currents inferred from far electromagnetic fields versus directly measured currents. Geophys Res Lett, 2007, 34, L19810, DOI: 10.1029/2007gl030870.
|
[69]
|
张长秀.广州高建筑物对其周围地闪活动特征影响的研究.北京: 中国气象科学研究院, 2017.
|
[70]
|
Hussein A, Jan S, Todorovski V, et al.Influence of the CN Tower on the Lightning Environment in Its Vicinity.International Lightning Detection Conference and International Lightning Meteorological Conference(ILDC/ILMC), Orlando, Florida, USA, 2010.
|
[71]
|
Diendorfer G, Schulz W, Umprecht H, et al.Effect of Tower Initiated Lightning on the Ground Stroke Density in the Vicinity of the Tower.International Lightning Detection Conference and International Lightning Meteorology Conference (ILDC/ILMC), Orlando, Florida, USA, 2010.
|
[72]
|
Wang D, Takagi N.Characteristics of winter lightning that occurred on a windmill and its lightning protection tower in Japan. IEEJ Transactions on Power and Energy, 2012, 132(6):568-572. doi: 10.1541/ieejpes.132.568
|
[73]
|
Zhou H, Diendorfer G, Thottappillil R, et al.Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower. J Geophys Res Atmos, 2012, 117, D08102, DOI: 10.1029/2011JD017269.
|
[74]
|
Warner T A, Cummins K L, Orville R E.Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004-2010. J Geophys Res Atmos, 2012, 117, D19109, DOI: 10.1029/2012JD018346.
|
[75]
|
Mazur V, Ruhnke L H.Physical processes during development of upward leaders from tall structures. Journal of Electrostatics, 2011, 69(2):97-110. doi: 10.1016/j.elstat.2011.01.003
|
[76]
|
Mazur V, Ruhnke L H, Warner T A, et al.Recoil leader formation and development. Journal of Electrostatics, 2013, 71(4):763-768. doi: 10.1016/j.elstat.2013.05.001
|
[77]
|
Velde O A, AMontanyà J.Asymmetries in bidirectional leader development of lightning flashes. J Geophys Res Atmos, 2013, 118(24):13504-13519. doi: 10.1002/2013JD020257
|
[78]
|
|
[79]
|
Qie X, Pu Y, Jiang R, et al.Bidirectional leader development in a preexisting channel as observed in rocket-triggered lightning flashes. J Geophys Res Atmos, 2017, 122(2):586-599. doi: 10.1002/2016JD025224
|
[80]
|
Schulz W, Diendorfer G, Pedeboy S, et al.The European lightning location system EUCLID-Part 1:Performance analysis and validation. Natural Hazards and Earth System Sciences, 2016, 16(2):595-605. doi: 10.5194/nhess-16-595-2016
|