Wu Bin, Lü Weitao, Qi Qi, et al. High-speed video observations on abrupt elongations of the positive end of bidirectional leader. J Appl Meteor Sci, 2020, 31(2): 146-155. DOI:  10.11898/1001-7313.20200202.
Citation: Wu Bin, Lü Weitao, Qi Qi, et al. High-speed video observations on abrupt elongations of the positive end of bidirectional leader. J Appl Meteor Sci, 2020, 31(2): 146-155. DOI:  10.11898/1001-7313.20200202.

High-speed Video Observations on Abrupt Elongations of the Positive End of Bidirectional Leader

DOI: 10.11898/1001-7313.20200202
  • Received Date: 2019-10-15
  • Rev Recd Date: 2020-01-15
  • Publish Date: 2020-03-31
  • One of the most important advances in lightning physics research in recent decades is the introduction of the the bidirectional developmengt of leaders and its observation and verification, but this theory is not paid much attention until more and more observation results of natural lightning, long gap spark discharge in laboratory and artificially triggered lightning have proved the correctness of the concept.The theory is used to establish the model of leader to interpretate the physical mechanism of lightning initiation and development. High-speed video camera observation not only provides direct evidence for the development of bidirectional leader, but also gives details of positive and negative ends. Previous observations show that the negative leader developed in a step-wise manner by relying on the space stem/leader and the corona streamer at the front of the new leader's tip. Positive leaders propagate in a continuous or step-wise manner, but to date, characteristics and mechanisms of the development of positive leaders are still unclear. In recent years, the abrupt elongations of the positive leader (or the positive end of bidirectional leader) are found in the high-speed video observation of the leader. This phenomenon might be closely related to the propagation mechanism of the positive leader and deserves further observation and analysis.Based on synchronization data of high-speed video camera and electric field change of an upward flash at the Canton Tower, the abrupt elongations phenomenon of the positive end before and after the return stroke is analyzed in detail.Results show that the positive end of the second dart leader intermittently extends into the air. There are three abrupt elongations of the second dart leader of the positive end, and the second abrupt elongation is caused by the connection between the positive end and the floating channel in which the tip of the positive end appears. After the second subsequent return stroke, there are two abrupt elongations of the channel tip. The two-dimensional average speed of the three abrupt elongations of the positive end is approximately 2.3×106 m·s-1, and the average length of the three abrupt elongations is approximately 115 m. After the return stroke, the two-dimensional average speed of the two abrupt elongations of the channel tip is approximately 4.3×106 m·s-1, and the average length of the two abrupt elongations is approximately 212 m.
  • Fig. 1  Synchronized fast(a) and slow(b) electric field change records of the Canton Tower upward flash

    (within-462.4 to 215 ms time window, R1-R7 refer to 7 return strokes of the upward flash)

    Fig. 2  Synchronized image brightness

    (sum of the gray values of all pixels in each image, based on HC-3 images, within-50 to 200 ms time window) (a), fast(b) and slow(c) electric field change records of the Canton Tower upward flash (R1-R7 refer to 7 return strokes)

    Fig. 3  Composite image of 30 selected frames (from -150 to -40 ms) obtained by HC-3 (1000 fps) showing the upward positive leader

    (image is inverted and contrast enhanced, the dashed rectangular box denotes the field of view of HC-1)

    Fig. 4  Sixteen consecutive images of the second dart leader obtained by the high-speed video camera 1 (HC-1, 20000 fps)

    (images are cropped, inverted and contrast-enhanced, time on each image is the end of the exposure time)

    Fig. 5  Twelve consecutive images after the second return stroke obtained by the high-speed video camera 1

    (HC-1, 20000 fps)(images are cropped, inverted and contrast-enhanced, time on each image is the end of the exposure time)

    Fig. 6  The two-dimensional speed of the extending negative and positive ends of the second dart leader

  • [1]
    Kasemir H W.A contribution to the electrostatic theory of a lightning discharge.J Geophys Res, 1960, 65(7):1873-1878, DOI: 10.1029/JZ065i007p01873.
    [2]
    Mazur V, Fisher B D, Gerlach J C.Lightning strikes to an airplane in a thunderstorm.J Aircraft, 1984, 21(8):607-611, DOI: 10.2514/3.45030.
    [3]
    Mazur V.Triggered lightning strikes to aircraft and natural intracloud discharges.J Geophys Res, 1989, 94(D3):3311-3325, DOI: 10.1029/JD094iD03p03311.
    [4]
    Castellani A, Bondiou-Clergerie A, Lalande P, et al.Laboratory study of the bi-leader process from an electrically floating conductor.Ⅰ.General results, science, measurement and technology.IEE Proceedings, 1998, 145(5):185-192, DOI: 10.1049/ip-smt:19982206.
    [5]
    Chen M L, Watanabe T, Takagi N, et al.Simultaneous observations of optical and electrical signals in altitude-triggered negative lightning flashes.J Geophys Res, 2003, 108(D8), DOI: 10.1029/2002jd002676.
    [6]
    Rakov V A, Uman M A, Rambo K J, et al.New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama.J Geophys Res, 1998, 103(D12):14117-14130, DOI: 10.1029/97JD02149.
    [7]
    Saba M M F, Schumann C, Warner T A, et al.High-speed video and electric field observation of a negative upward leader connecting a downward positive leader in a positive cloud-to-ground flash.Electric Power Systems Research, 2015, 118(Suppl Ⅰ):89-92, DOI: 10.1016/j.epsr.2014.06.002.
    [8]
    Montanyà J, Oscar V D V, Williams E R.The start of lightning:evidence of bidirectional lightning initiation.Scientific Reports, 2015, 5:15180, DOI: 10.1038/srep15180.
    [9]
    Tran M D, Rakov V A.Initiation and propagation of cloud-to-ground lightning observed with a high-speed video camera.Scientific Reports, 2016, 6(1):39521, DOI: 10.1038/srep39521.
    [10]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. http://qikan.camscma.cn/jamsweb/article/id/200606130
    [11]
    Mazur V, Ruhnke L H.Model of electric charges in thunderstorms and associated lightning.J Geophys Res Atmos, 1998, 103(D18), DOI: 10.1029/98JD02120.
    [12]
    Iudin D I, Rakov V A, Mareev E A, et al.Advanced numerical model of lightning development:Application to studying the role of lpcr in determining lightning type.J Geophys Res Atmos, 2017, 122:6416-6430, DOI: 10.1002/2016JD026261.
    [13]
    Jiang R, Wu Z, Qie X, et al.High-speed video evidence of a dart leader with bidirectional development.Geophys Res Lett, 2014, 41:5246-5250, DOI: 10.1002/2014GL060585.
    [14]
    Qie X, Pu Y, Jiang R, et al.Bidirectional leader development in a preexisting channel as observed in rocket-triggered lightning flashes.J Geophys Res Atmos, 2017, 122:586-599, DOI: 10.1002/2016JD025224.
    [15]
    Wu B, Lyu W, Qi Q, et al.High-speed video observations of recoil leaders producing and not producing return strokes in a Canton-Tower upward flash.Geophys Res Lett, 2019, 46:8546-8553, DOI: 10.1029/2019GL083862.
    [16]
    Berger K.Novel observations on lightning discharges:Results of research on Mount San Salvatore.Journal of the Franklin Institute, 1967, 283:478-525, DOI: 10.1016/0016-0032(67)90598-4.
    [17]
    Orville R E, Huffines G R.Lightning Ground Flash Measurements over the Contiguous United States: A Ten-year Summary 1989-1998//Proc 11th Int Conf on Atmosph Elec, 1999: 412-415.
    [18]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. http://qikan.camscma.cn/jamsweb/article/id/20080403
    [19]
    李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. http://qikan.camscma.cn/jamsweb/article/id/20100113
    [20]
    Biagi C J, Jordan D M.High-speed video observations of rocket-and-wire initiated lightning.Geophys Res Lett, 2009, 36, L15801, DOI: 10.1029/2009GL038525.
    [21]
    Biagi C J, Uman M A.Negative leader step mechanisms observed in altitude triggered lightning.J Geophys Res Atmos, 2014, 119:8160-8168, DOI: 10.1002/2013JD020281.
    [22]
    Gamerota W R, Idone V P, Uman M A, et al.Dart-stepped-leader step formation in triggered lightning.Geophys Res Lett, 2014, 41:2204-2211, DOI: 10.1002/2014GL059627.
    [23]
    Hill J D, Uman M A, Jordan D M.High-speed video observations of a lightning stepped leader.J Geophys Res, 2011, 116, D16117, DOI: 10.1029/2011JD015818.
    [24]
    Qi Q, Lu W, Ma Y, et al.High-speed video observations of the fine structure of a natural negative stepped leader at close distance.Atmos Res, 2016, 178/179, 260-267, DOI: 10.1016/j.atmosres.2016.03.027.
    [25]
    Berger K, Vogelsanger E.Photographische blitzuntersuchungen der jahre 1955-1965 auf dem Monte San Salvatore.Bulletin des Schweizerischen Elektrotechnischen Vereins, 1966, 57(1):599-620.
    [26]
    Wang Z, Qie X, Jiang R, et al.High-speed video observation of stepwise propagation of a natural upward positive leader.J Geophys Res Atmos, 2016, 121, DOI: 10.1002/2016JD025605.
    [27]
    Kostinskiy A Y, Syssoev V S, Bogatov N A, et al.Abrupt elongation (stepping) of negative and positive leaders culminating in an intense corona streamer burst:Observations in long sparks and implications for lightning.J Geophys Res Atmos, 2018, 123:5360-5375, DOI: 10.1029/2017JD027997.
    [28]
    Lu W, Chen L, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40:5531-5535, DOI: 10.1002/2013GL058060.
    [29]
    Lu W, Chen L, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.J Geophys Res, 2012, 117, D19211, DOI: 10.1029/2012JD018035.
    [30]
    Qi Q, Lyu W, Wu B, et al. Three-dimensional optical observations of an upward lightning triggered by positive cloud-to-ground lightning.Atmos Res, 2018, 214:275-283, DOI: 10.1016/j.atmosres.2018.08.003.
    [31]
    王智敏, 吕伟涛, 陈绿文, 等.2011-2012年广州高建筑物雷电磁场特征统计.应用气象学报, 2015, 26(1):87-94. doi:  10.11898/1001-7313.20150109
    [32]
    吴姗姗, 吕伟涛, 齐奇, 等.基于光学资料的广州塔附近下行地闪特征.应用气象学报, 2019, 30(2):203-210. doi:  10.11898/1001-7313.20190207
    [33]
    武斌, 吕伟涛, 齐奇, 等.一次正地闪触发两个并发上行闪电的光电观测.应用气象学报, 2019, 30(3):3-12. doi:  10.11898/1001-7313.20190301
    [34]
    吕伟涛, 陈绿文, 马颖, 等.广州高建筑物雷电观测与研究10年进站.应用气象学报, 2020, 31(2):129-145. doi:  10.11898/1001-7313.20200201
    [35]
    齐奇, 吕伟涛, 武斌, 等.广州不同高建筑物上闪击距离的二维光学观测.应用气象学报, 2020, 31(2):156-164. doi:  10.11898/1001-7313.20200203
    [36]
    Lv W, Ma Y, Zhang Y, et al.Total-sky Lightning Event Observation System and Method: US Patent.US8902312 B2.2014-12-02.
    [37]
    Wang D, Takagi N, Gamerota W R, et al.Initiation processes of return strokes in rocket-triggered lightning.J Geophys Res Atmos, 2013, 118(17):9880-9888, DOI: 10.1002/jgrd.50766.
    [38]
    陈绿文, 吕伟涛, 马颖, 等.粤港澳闪电定位系统对高建筑物雷电的探测结果分析.应用气象学报, 2020, 31(2):165-174. doi:  10.11898/1001-7313.20200204
    [39]
    Rakov V A, Uman M A.Lightning:Physics and Effects.Cambridge:Cambridge University Press, 2003.
    [40]
    Saba M M F, Schumann C, Warner T A, et al.Upward lightning flashes characteristics from high-speed videos.J Geophys Res Atmos, 2016, 121:8493-8505, DOI: 10.1002/2016JD025137.
    [41]
    Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35, L02803, DOI: 10.1029/2007GL032136.
    [42]
    Yoshida S, Biagi C J, Rakov V A, et al.The initial stage processes of rocket-wire triggered lightning as observed by VHF interferometry.J Geophys Res Atmos, 2012, 117, D09119, DOI:10.1029/2012JD 017657.
    [43]
    Pilkey J T.The Physics of Lightning Studied Using Lightning Mapping Array, Electric Field, and Optical Measurements.Florida: University of Florida, 2014.
    [44]
    Montanyà J, van der Velde O, Williams E R.The start of lightning:Evidence of bidirectional lightning initiation.Scientific Reports, 2015, 15180, DOI: 10.1038/srep15180.
    [45]
    Warner T A, Saba M M F, Schumann C, et al.Observations of bidirectional lightning leader initiation and development near positive leader channels.J Geophys Res Atmos, 2016, 121:9251-9260, DOI: 10.1002/2016JD025365.
    [46]
    Yuan S, Jiang R, Qie X, et al.Development of side bidirectional leader and its effect on channel branching of the progressing positive leader of lightning.Geophys Res Lett, 2019, 46:1746-1753, DOI: 10.1029/2018GL08071.
    [47]
    Stock M G, Krehbiel P R, Lapierre J, et al.Fast positive breakdown in lightning.J Geophys Res Atmos, 2017, 122:8135-8152, DOI: 10.1002/2016jd025909.
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (4042) PDF downloads(53) Cited by()
    • Received : 2019-10-15
    • Accepted : 2020-01-15
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint