Qi Qi, Lü Weitao, Wu Bin, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. DOI:  10.11898/1001-7313.20200203.
Citation: Qi Qi, Lü Weitao, Wu Bin, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. DOI:  10.11898/1001-7313.20200203.

Two-dimensional Optical Observation of Striking Distance of Lightning Flashes to Two Buildings in Guangzhou

DOI: 10.11898/1001-7313.20200203
  • Received Date: 2019-10-08
  • Rev Recd Date: 2020-01-20
  • Publish Date: 2020-03-31
  • Lightning can strike directly on buildings, lightning protection devices or the lateral surface of buildings, endangering buildings on the ground. Effective lightning protection measures can avoid lightning damage to buildings and prevent possible fire, explosion or other hazards. Striking distance is an important reference index in lightning protection design of buildings, which is widely used in various common lightning protection design methods, such as rolling ball method, collecting volume method, etc. With the development of social economy, there are more and more tall-object in modern cities. It becomes more challenging to accurately estimate the striking distance of buildings with different heights and to formulate more effective lightning protection schemes. Up to now, lots of researches on the attachment process of natural lightning are conducted, especially by means of optical observation, which mainly benefits from the intuition of optical data. Although a large number of observations have been made on the lightning attachment process, reports on the striking distance are still rare.Based on optical data of 21 lightning discharges on two steeple buildings, the Canton Tower (600 m, 12 cases) and the Guangsheng International Building (360 m, 9 cases) from 2012 to 2018, and data of return stroke peak current provided by Guangdong Power Grid Lightning Location System, influences of building height and return stroke peak current intensity on the striking distance are analyzed. Results show that the striking distance on higher buildings is longer, and the median lightning strike distance of the Canton Tower is about 2 times of that of the Guangsheng International Building. For buildings with a certain height, the striking distance tends to increase with the peak current increasing. Moreover, the higher the building is, the stronger the peak current of the corresponding return stroke is. The peak current of return stroke on the Canton Tower is obviously stronger than (about 1.7 times) that on the Guangsheng International Building. In the attachment process, the two-diensional average speed ratio of the downward leader and the upward leader is less than 4 at 0.1 ms before the return stroke. The number of cases with a ratio of 0 to 1 is the largest, accounting for about 65% of the total number of cases.
  • Fig. 1  Location of the TOLOG, the Canton Tower and the Guangsheng International Building

    Fig. 2  Lightning process images occurred on the Guangsheng International Building, obtained by high-speed video camera HC-1 (10000 fps)

    (a)-2.2 ms, (b)-0.1 ms, (c)0.5 ms

    Fig. 3  Striking distance from the Canton Tower to the Guangsheng International Building

    Fig. 4  The relationship of the lightning return stroke peak current to the striking distance

    Fig. 5  The relationship between initiation time of the UCL and the striking distance from the Canton Tower to the Guangsheng International Building

    Fig. 6  Two-dimensional average speeds statistic chart of upward connecting leader (UCL) and downward leader (DL)

    (a)speeds of UCL from 0 to 0.1 ms before the return stroke, (b)speeds of UCL from 0 to 0.5 ms before the return stroke, (c)speeds of DL from 0 to 0.1 ms before the return stroke, (d)speeds of DL from 0 to 0.5 ms before the return stroke

    Fig. 7  The ratio between the speed of downward leader (Vd) and that of upward connecting leader (Vu) during 0.1 ms before the return stroke

    Table  1  Parameters of High-speed Video Cameras

    观测时间 设备编号 型号 帧率/(帧/s) 焦距/mm 空间分辨率/(m/像素)
    广州塔 广晟国际大厦
    2012年6月—2015年11月 HC-1 Photron FASTCAM SA5 10000 14 4.7 3.0
    2016年5月—2018年9月 HC-1 Photron FASTCAM SAZ 20000 14 4.7 3.0
    2010年6月—2018年9月 HC-2 Photron FASTCAM SA5 50000 20 3.3
    DownLoad: Download CSV
  • [1]
    Rakov V A, Uman M A.Lightning:Physics and Effects.New York:Cambridge University Press, 2003.
    [2]
    Rakov V A, Tran M D.The breakthrough phase of lightning attachment process:From collision of opposite-polarity streamers to hot-channel connection.Electric Power Systems Research, 2019, 173:122-134. doi:  10.1016/j.epsr.2019.03.018
    [3]
    Golde R H.Lightning Protection.Edward Arnold, London, 1973: 26-30.
    [4]
    Rakov V A, Lutz A O.A New Technique for Estimating Equivalent Attractive Radius for Downward Lightning Flashes//Proc 20th Int Conf on Lightning Protection, 1990: p.2.2.
    [5]
    Berger K, Vogelsanger E.Photographische Blitzuntersuchungen der Jahre 1955-1965 auf dem Monte San Salvatore.Bull Schweiz Elektrotech Ver, 1966, 57:599-620.
    [6]
    Warner T A.Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders.International Conference on Lightning Protection (ICLP), Cagliari, Italy, 2010.
    [7]
    Lu W, Zhang Y, Chen L, et al.Attachment Processes of Two Natural Downward Lightning Flashes Striking on High Structures.30th International Conference on Lightning Protection.Power and Energy Soc, Cagliari, Italy, 2010.
    [8]
    Lu W, Chen L, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40(20):5531-5535. doi:  10.1002/2013GL058060
    [9]
    Gao Y, Lu W, Ma Y, et al.Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou.Atmos Res, 2014, 149:193-203, DOI: 10.1016/j.atmosres.2014.06.008.
    [10]
    Wang D, Gamerota W R, Uman M A, et al.Lightning attachment processes of an"anomalous" triggered lightning discharge.J Geophys Res Atmos, 2014, 119:1524-1533, DOI: 10.1002/2013JD020787.
    [11]
    Jiang R, Qie X, Wang Z, et al.Characteristics of lightning leader propagation and ground attachment.J Geophys Res Atmos, 2015, 120:11988-12002.
    [12]
    Tran M D, Rakov V A.When does the lightning attachment process actually begin.J Geophys Res Atmos, 2015, 120:6836-6922.
    [13]
    Lu W, Qi Q, Ma Y, et al.Two basic leader connection scenarios observed in negative lightning attachment process.High Voltage, 2016, 1(1):11-17, DOI: 10.1049/hve.2016.0002.
    [14]
    Saba M M F, Paiva A R, Schumann C, et al.Lightning attachment process to common buildings.Geophys Res Let, 2017, 44:4368-4375, DOI: 10.1002/2017GL072796.
    [15]
    Visacro S, Guimaraes M, Murta Vale M H.Striking distance determined from high-speed videos and measured currents in negative cloud-to-ground lightning.J Geophys Res Atmos, 2017, 122:13356-13369. doi:  10.1002/2017JD027354
    [16]
    Tran M D, Rakov V A.A study of the ground-attachment process in natural lightning with emphasis on its breakthrough phase.J Sci Rep, 2017, 7(1):15761, DOI: 10.1038/s41598-017-14842-7.
    [17]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.3969/j.issn.1001-7313.2008.04.003
    [18]
    Cooray V, Rakov V, Theethayi N.The lightning striking distance-Revisited.Journal of Electrostatics, 2007, 65(5/6):296-306.https://doi.org/10.1016/j.elstat.2006.09.008. doi:  10.1016/j.elstat.2006.09.008
    [19]
    Love E R.Improvements on Lightning Stroke Modeling and Applications to the Design of EHV and UHV Transmission Lines.Colorado: University of Colorado, 1973.
    [20]
    Golde R H.The Lightning Conductor Lightning.San Diego: Academic, 1977.
    [21]
    Eriksson A J.The Lightning Ground Flash-An Engineering Study.Pretoria, South Africa: Faculty of Engineering, University of Natal, 1979.
    [22]
    Cooray V.A model for negative first return strokes in negative lightning flashes.Phys Scr, 1997, 55:119-128. doi:  10.1088/0031-8949/55/1/024
    [23]
    杨欣怡, 吕伟涛, 杨俊, 等.3种阈值方法在闪电通道图像识别中的应用.应用气象学报, 2014, 25(4):427-435. doi:  10.3969/j.issn.1001-7313.2014.04.005
    [24]
    王智敏, 吕伟涛, 陈绿文, 等.2011-2012年广州高建筑物雷电磁场特征统计.应用气象学报, 2015, 26(1):87-94. doi:  10.11898/1001-7313.20150109
    [25]
    陈绿文, 吕伟涛, 张义军, 等.不同高度建筑物上的下行地闪回击特征.应用气象学报, 2015, 26(3):311-318. doi:  10.11898/1001-7313.20150306
    [26]
    吴姗姗, 吕伟涛, 齐奇, 等.基于光学资料的广州塔附近下行地闪特征.应用气象学报, 2019, 30(2):203-210. doi:  10.11898/1001-7313.20190207
    [27]
    武斌, 吕伟涛, 齐奇, 等.一次正地闪触发两个并发上行闪电的光电观测.应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
    [28]
    武斌, 吕伟涛, 齐奇, 等.双向先导正端突然延展现象的高速摄像观测.应用气象学报, 2020, 31(2):146-155. doi:  10.11898/1001-7313.20200202
    [29]
    吕伟涛, 陈绿文, 马颖, 等.广州高建筑物雷电观测与研究10年进展.应用气象学报, 2020, 31(2):129-145. doi:  10.11898/1001-7313.20200201
    [30]
    Wang D, Watanabe T, Takagi N.A High Speed Optical Imaging System for Studying Lightning Attachment Rrocess//Proceedings of the 7th Asia-Pacific International Conference on Lightning, 2011: 937-940.
    [31]
    Chen L, Lu W, Zhang Y, et al.Optical progression characteristics of an interesting natural downward bipolar lightning flash.J Geophys Res Atmos, 2015, 120:708-715, DOI: 10.1002/2014JD022463.
    [32]
    Zhang C, Lu W, Chen L, et al.Influence of the Canton Tower on the cloud-toground lightning in its vicinity.J Geophys Res Atmos, 2017, 122, DOI: 10.1002/2016JD026229.
    [33]
    Chen L, Zhang Y, Lu W, et al.Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes.J Atmos Ocean Technol, 2012, 29(12):1835-1844, DOI: 10.1175/JTECH-D-12-00028.1.
    [34]
    Eriksson A J.An improved electrogeometric model for transmission line shielding analysis.IEEE Trans Power Delivery, 1987, 2:871-877.
    [35]
    Eriksson A J.The incidence of lightning strikes to power lines.IEEE Trans Power Delivery, 1987, 2:859-870. doi:  10.1109/TPWRD.1987.4308191
    [36]
    Rizk F A M.Modeling of transmission line:exposure to direct lightning strokes.IEEE Trans Power Delivery, 1990, 5:1983-1989. doi:  10.1109/61.103694
    [37]
    Rizk F A M.Modeling of lightning incidence to tall structures Part Ⅱ:Application.IEEE Trans Power Delivery, 1994, 9:172-193. doi:  10.1109/61.277690
    [38]
    Mazur V, Ruhnke L H, Bondiou-Clergerie A, et al.Computer simulation of a downward negative stepped leader and its interaction with a ground structure.J Geophys Res, 2000, 105(D17):22361-22369, DOI: 10.1029/2000JD900278.
    [39]
    Dellera L, Garbagnati E.Lightning stroke simulation by means of the Leader Progression Model.Ⅰ:Description of the model and evaluation of exposure of free-standing structures.IEEE Trans Power Delivery, 1990, 5:2009-2022, DOI: 10.1109/61.103696.
    [40]
    Dellera L, Garbagnati E.Lightning stroke simulation by means of the Leader Progression Model.Ⅱ:Exposure and shielding failure evaluation of overhead lines with assessment of application graphs.IEEE Trans Power Delivery, 1990, 5:2023-2029, DOI: 10.1109/61.103697.
    [41]
    Diendorfer G, Pichler H.Properties of Lightning Discharges to an Instrumented Tower and Their Implication on the Location of Those Flashes by Lightning Location Systems.6th International Workshop on Physics of Lightning, 2006.
    [42]
    Baba Y, Rakov V A.Lightning strikes to tall objects:Currents inferred from far electromagnetic fields versus directly measured currents.Geophys Res Lett, 2007, 34, L19810, DOI: 10.1029/2007GL030870.
    [43]
    Lafkovici A, Hussein A M, Janischewskyj W, et al.Performance Analysis of the North American Lightning Detection Network Using CN Tower Lightning Data.19th International Lightning Detection Conference, 2006.
    [44]
    廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (3614) PDF downloads(38) Cited by()
    • Received : 2019-10-08
    • Accepted : 2020-01-20
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint