Wang Yiru, Tan Yongbo, Zheng Tianxue, et al. Numerical simulation of main negative charge area parameters for upward negative cloud-to-ground lightning. J Appl Meteor Sci, 2020, 31(2): 175-184. DOI:  10.11898/1001-7313.20200205.
Citation: Wang Yiru, Tan Yongbo, Zheng Tianxue, et al. Numerical simulation of main negative charge area parameters for upward negative cloud-to-ground lightning. J Appl Meteor Sci, 2020, 31(2): 175-184. DOI:  10.11898/1001-7313.20200205.

Numerical Simulation of Main Negative Charge Area Parameters for Upward Negative Cloud-to-ground Lightning

DOI: 10.11898/1001-7313.20200205
  • Received Date: 2019-11-11
  • Rev Recd Date: 2020-01-08
  • Publish Date: 2020-03-31
  • Different types of lightning initiation condition are the focus of scientific research. The initiation of cloud lightning is competitive with self-sustaining uplink lightning. Based on the classical dipolar charge structure and the existing lightning discharge parameterization schemes, under the background of the classic dipolar charge structure, two-dimensional(2-D) high-resolution lightning discharge simulation experiments are carried out by adjusting the parameters of the main negative charge regions. Cloud charge structures which are beneficial to the onset of self-sustaining upward lightning are discussed. Results show that the part of the lightning at the beginning of the building has almost no bifurcation, and spreads straight toward the vertical direction. As the lightning continues developing, it gradually extends horizontally, and lightning channel branches gradually increase. Branches generally develop from bottom to top. The development of new branches in the front section of the main channel will hinder the development of lightning branches located to a certain extent. Branches at the same height may have a simultaneous developing trend. It can be inferred that this is related to the flat surface potential direction and the potential well in the charge region of the cloud. It is found that the higher the charge area is, the larger the charge density and distribution range the initial-self-sustaining uplink lightning needs. There speculates a threshold of the height of the main negative charge regions for the onset of upward lightning. When the negative charge region is higher than that, with the accumulation of charge in the main negative regions, the lightning will start in clouds instead of upward lightning. Only when the main negative area is lower than the threshold, the steady accumulation of electric charge will cause the flash originating. This may charge far away from the earth, and the cloud charge accumulation effects are greater than the increasing process of the electric field in the cloud for building sophisticated growth effects of electric field. As the main negative charge accumulates, the lightning starting conditions are firstly met in the cloud, initiating flashes in the clouds.
  • Fig. 1  Diagram of dipolar charge structure in thunderstorm clouds (from Reference [35])

    Fig. 2  Lightning channel structure and potential distribution at different heights in the main negative charge zone before discharge

    (solid and dashed lines denote the positive and negative potential contours, unit:MV; the color denotes the sequence of lightning channel development)

    Fig. 3  Lightning channel structure and potential distribution map in different horizontal ranges of the main and negative charge zone before discharge

    (solid and dotted lines denote the positive and negative potential contours, unit:MV; the color denotes the sequence of lightning channel development step)

    Fig. 4  The height and charge concentration of the main negative charge region and the extreme value of electric field in cloud for the development of upward negative cloud-to-ground lightning

    (the discrete point is the parameter point which is beneficial to self-sustaining up-going ground flashover, the color is the strongest electric field in space under corresponding parameters)

    Table  1  Geometrical and electrical parameters of thunderstorm clouds

    电荷区 ρ0/(nC·m-3) z0/km rx/km rz/km
    S区 -1.0 9.5 4.0 1.0
    P区 2.2 7.0 4.0 1.5
    N区 0.8~3.6 2.5~4.0 3.0~4.5 1.5
    DownLoad: Download CSV

    Table  2  Charge background and other parameters for upward negative cloud-to-ground lightning development in the main negative charge area at different heights

    案例 主负电荷区z0/km 主负电荷区ρ0/(nC·m-3) 云中电场强度极值/(kV·m-1) 地面建筑高度电场/(kV·m-1) 闪电通道总步长/km
    UNL1 3.75 2.5 139.3 15.4 20.19
    UNL2 3.5 1.8 124.2 15.2 12.56
    UNL3 3.2 1.3 127.5 15.4 8.12
    UNL4 3.0 1.2 129.5 15.6 8.93
    DownLoad: Download CSV

    Table  3  Charge background and other parameters for upward negative cloud-to-ground lightning development in the main negative charge area for different horizontal ranges

    案例编号 主负电荷区rx/km 主负电荷区ρ0/(nC·m-3) 云中电场最大值/(kV·m-1) 地面建筑高度电场/(kV·m-1) 闪电通道总步长/km
    UNL2 3.0 1.8 124.2 15.2 12.56
    UNL5 3.25 1.7 124.2 15.2 11.91
    UNL6 3.5 1.6 124.2 15.0 11.54
    UNL7 4.0 1.5 124.1 15.3 12.66
    UNL8 4.25 1.4 123.9 15.9 14.77
    DownLoad: Download CSV
  • [1]
    Zhou H, Diendorfer G, Thottappillil R, et al.Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower.J Geophys Res Atmos, 2012, 117(D8):102-105.
    [2]
    Zhou H, Diendorfer G, Thottappillil R, et al.Characteristics of upward positive lightning flashes initiated from the Gaisberg Tower.J Geophys Res Atmos, 2012, 117(D6):110-123.
    [3]
    Warner T A.Observations of simultaneous upward lightning leaders from multiple tall structures.Atmos Res, 2012, 117(11):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4855e3738c98683a8ff69d8be55e54de
    [4]
    Takagi N, Wang D, Watanabe T A.Study of upward positive leaders based on simultaneous observation of E-fields and high-speed images.IEEE Transactions on Fundamentals & Materials, 2006, 126(126):256-259.
    [5]
    武斌, 吕伟涛, 齐奇, 等.次正地闪触发两个并发上行闪电的光电观测, 应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
    [6]
    Wu B, Lv W, Qi Q, et al.High-speed video observations of recoil leaders producing and not producing return strokes in a Canton-Tower upward flash.Geophys Res Lett, 2019, 46:14-27.
    [7]
    Wu B, Lyu W, Qi Q, et al.Synchronized two-station optical and electric field observations of multiple upward lightning flashes triggered by a 310-kA+CG flash.J Geophys Res Atmos, 2019, 124:1050-1063. doi:  10.1029/2018JD029378
    [8]
    Qi Q, Lyu W, Wu B, et al.Three-dimensional optical observations of an upward lightning triggered by positive cloud-to-ground lightning.Atmos Res, 2018, 214:275-283. doi:  10.1016/j.atmosres.2018.08.003
    [9]
    Wang Z, Qie X, Jiang R, et al.High-speed video observation of stepwise propagation of a natural upward positive leader.J Geophys Res Atmos, 2016, 121(24):14307-14315. doi:  10.1002/2016JD025605
    [10]
    Yuan S, Jiang R, Qie X, et al.Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions.J Geophys Res Atmos, 2017, 122(22):93-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2017JD027198
    [11]
    Tan Y, Tao S, Liang Z, et al.Numerical study on relationship between lightning types and distribution of space charge and electric potential.J Geophys Res Atmos, 2014, 119(2):1003-1014. doi:  10.1002/2013JD019983
    [12]
    刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. doi:  10.11898/1001-7313.20160102
    [13]
    周康辉, 郑永光, 蓝渝.基于闪电数据的雷暴识别、追踪与外推方法.应用气象学报, 2016, 27(2):173-181. doi:  10.11898/1001-7313.20160205
    [14]
    廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
    [15]
    张义军, 张阳.雷暴闪电放电活动对电离层影响的研究进展.应用气象学报, 2016, 27(5):570-576. doi:  10.11898/1001-7313.20160506
    [16]
    谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. doi:  10.11898/1001-7313.20170210
    [17]
    张义军, 孟青, 吕伟涛, 等.两次超级单体雷暴的电荷结构及其地闪特征.科学通报, 2005, 50(23):2663-2675. http://d.old.wanfangdata.com.cn/Periodical/kxtb200523017
    [18]
    Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorm.Nat Geosci, 2008, 1:233-237. doi:  10.1038/ngeo162
    [19]
    Zheng D, Zhang Y, Meng Q, et al.Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h.Atmos Res, 2010, 97(1/2):241-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a76ecb103e5beee8fab96e3214815
    [20]
    谭涌波, 陈超, 周洁晨, 等.积云模式中上行地闪的参数化方案及起始有利云内环境特征的探讨.中国科学(D辑), 2016, 46(7):986-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201607010
    [21]
    谭涌波, 梁忠武, 师正, 等.雷暴云底部正电荷区对闪电类型影响的数值模拟.中国科学(D辑), 2014, 44(12):2743-2752. http://d.old.wanfangdata.com.cn/Conference/8187034
    [22]
    Carey L D, Murphy M J, McCormick T L, et al.Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system.J Geophys Res, 2005, 110(D3):105-128. doi:  10.1029-2003JD004371/
    [23]
    Liu D, Qie X, Pan L, et al.Some characteristics of lightning activity and radiation source distribution in a squall line over north China.Atmos Res, 2013, 118(10):423-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21067f4e255936c421df187eb742884f
    [24]
    Jiang R, Sun Z, Wu Z.Concurrent upward lightning flashes from two towers.Atmos Oceanic Sci Lett, 2014, 7(3):260-264. doi:  10.1080/16742834.2014.11447171
    [25]
    郭秀峰, 张其林, 张金波, 等.具有不对称结构的电晕放电模型建立及应用.科学技术与工程, 2018, 18(8):13-20. http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201808003
    [26]
    谭涌波, 周博文, 郭秀峰, 等.建筑物高度对上行闪电触发以及传播影响的数值模拟.气象学报, 2015, 73(3):546-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201503011
    [27]
    Tan Y, Guo X, Zhu J, et al.Influence on simulation accuracy of atmospheric electric field around a building by space resolution.Atmos Res, 2014, 138(138):301-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e155d00258b987fa12eb58735c8e4ca3
    [28]
    Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35(2):196-199.
    [29]
    Warner T A, Lang T J, Lyons W A.Syonptic scale outbreak of self-initiated upward lightning(SIUL) from tall structures during the central US blizzard of 1-2 February 2011.J Geophys Res, 2014, 119:9530-9548.
    [30]
    Brook M, Nakano M, Krehbiel P, et al.The electrical structure of the hokuriku winter thunderstorms.J Geophys Res Oceans, 1982, 87(C2):1207-1215. doi:  10.1029/JC087iC02p01207
    [31]
    Hager W W, Aslan B C, Sonnenfeld R G, et al.Three-dimensional charge structure of a mountain thunderstorm.J Geophys Res, 2010, 115(D12):119-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c15b67458a9e1ab310e2a110a80db99c
    [32]
    Jiang R, Qie X, Wu Z, et al.Characteristics of upward lightning from a 325-m-tall meteorology tower.Atmos Res, 2014, 149:111-119. doi:  10.1016/j.atmosres.2014.06.007
    [33]
    Ishii M, Saito M, Miki T, et al.Observation of Downward and Upward Lightning Flashes at 634-m Tower//XV International Conference on Atmospheric Electricity, 2014: 15-20.
    [34]
    Tan Y, Zheng T, Shi Z, et al.Improved lightning model:Application to discuss the characteristics of upward lightning.Atmos Res, 2019, 217:63-72. doi:  10.1016/j.atmosres.2018.10.011
    [35]
    林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. doi:  10.11898/1001-7313.20180311
    [36]
    于梦颖, 谭涌波, 师正, 等.通道感应电荷对放电活动特征的影响.应用气象学报, 2019, 30(1):105-116. doi:  10.11898/1001-7313.20190110
    [37]
    张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jamsweb/article/id/20140501
    [38]
    郭凤霞, 王曼霏, 黄兆楚, 等.青藏高原雷暴电荷结构特征及成因的数值模拟研究.高原气象, 2018, 37(4):911-922. http://d.old.wanfangdata.com.cn/Periodical/gyqx201804004
    [39]
    张廷龙, 郄秀书, 袁铁等.中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演.大气科学, 2008, 32(5):1221-1228. http://d.old.wanfangdata.com.cn/Periodical/daqikx200805019
    [40]
    Mansell E R.Simulated three-dimensional branched lightning in a numerical thunderstorm model.J Geophys Res, 2002, 107(D9):4075-4088.
    [41]
    Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions:2.Isolated storms.J Geophys Res, 1998, 103(D12):14079-14096. doi:  10.1029/97JD03547
    [42]
    谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分支结构的数值模拟.中国科学(D辑), 2006, 36(3):486-496.
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(3)

    Article views (4031) PDF downloads(44) Cited by()
    • Received : 2019-11-11
    • Accepted : 2020-01-08
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint