Liu Ze, Guo Fengxia, Zheng Dong, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. DOI:  10.11898/1001-7313.20200206.
Citation: Liu Ze, Guo Fengxia, Zheng Dong, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. DOI:  10.11898/1001-7313.20200206.

Lightning Activities in a Convection Cell Dominated by Heavy Warm Cloud Precipitation

DOI: 10.11898/1001-7313.20200206
  • Received Date: 2019-10-26
  • Rev Recd Date: 2020-01-09
  • Publish Date: 2020-03-31
  • Lightning activity in a convection cell that occurred in Guangzhou of China on 7 May 2017 dominated by heavy warm cloud precipitation and its relationship with the precipitation structure of the cell are disscussed, using three-dimensional lightning location data of the Low_Frequency E-field Dection Array (LFEDA) in the Field Experiment Base on Lightning Sciences, China Meteorological Administration (CMA_FEBLS) and Guangzhou polarimetric radar observations. According to the ground precipitation obtained by radar inversion, the maximum cumulative precipitation from 0000 BT to 0400 BT in the cell dominated by warm cloud precipitation is 261 mm. The cell produces a total of 1250 detected lightning flashes within 4 h, with the ratio of cloud-to-ground flashes being about 24%. Lightning discharges mainly occur in the height range of 4-12 km, corresponding to the isotherm layers between approximately 0℃ and -40℃. The height and isotherm associated with the peak-frequency lightning discharges are about 8.5 km and -19℃, respectively. The heavy rainfall cell represents general tripolar charge structure, i.e., the upper positive charge region, middle negative charge region and lower positive charge region, with the negative charge core being between approximately -8℃ and -15℃ layers. The region featuring lightning discharges and dominated by dry snow account for about 82% of all, while the ratio for the region featuring lightning discharges and dominated by graupel account for about 11%. Most graupel-dominating regions associate with lightning discharges are located between 4 km and 8 km layers. This may be related to the weak convection in the cell dominated by warm cloud precipitation. Total lightning rate show relatively significant correlations with the 30 dBZ radar echo top height and volumes of the regions where radar echoes are greater than 20 dBZ and heights are larger than -20℃ level. The average height of lightning discharges is well related with the 20 dBZ radar echo top height and volumes of regions where radar echoes are greater than 30 dBZ and heights are larger than -20℃ level. Relative prominent corresponding relationship is also found between total flash frequency and maximum precipitation intensity. Meanwhile, the rainfall per flash is in the order of 107 kg/fl.
  • Fig. 1  The radar composite reflectivity factor at 0006 BT, 0130 BT and 0300 BT on 7 May 2017

    (the origin of distance coordinate is located at the position of Guangzhou radar (black star), black triangles indicate 10 substations involved in LFEDA, two black concentric circles centered on Guangzhou radar indicate 50 and 100 km ranges from radar center, and red circle indicates the 100 km range of LFEDA network center, the purple ellipse indicates analyzed cells, black dots are lightning pulse discharge events (LPDE), the white solid line represents the position of vertical cross sections)

    Fig. 2  Vertical cross sections of Guangzhou radar variable at 0006 BT, 0130 BT and 0300 BT on 7 May 2017

    (gray dots represent lightning pulse discharge event(LPDE) within 5 km of vertical cross sections (the solid white line in Fig. 1), dashed black lines indicate the height of 0, -10, -20, -30℃ and -40℃ isotherms, which provided by Qingyuan sounding at 2000 BT 6 May 2017)

    Fig. 3  Evolution of frequencies of LPDE and flashes in the investigated cell during

    0000-0400 BT on 7 May 2017 (time interval is 6 min)

    Fig. 4  Lightning activity in the investigated cell during 0000—0400 BT on 7 May 2017

    (a)density of LPDE as a function of height and time (time interval is 6 min, height interval is 1 km, the initiation of upward negative initial leader(UNIL) and downward negative initial leader(DNIL) and positive cloud-to-ground lightning flashes and negative cloud-to-ground lightning flashes are superposed, dashed black lines labelled the isotherms of 0, -10, -20, -30℃ and -40℃ obtained from Qingyuan sounding at 2000 BT 6 May 2017), (b)height distributions of LPDE and initiation dots of UNIL and DNIL

    Fig. 5  Proportions of radar grid boxes with different-type hydrometeors in LPDE position at different heights in the investigated cell during 0000-0400 BT on 7 May 2017

    Fig. 6  Proportions of radar grid boxes dominantly featured by graupel and dry snow and the frequency of LPDE at different heights in the investigated cell during 0000-0400 BT on 7 May 2017

    Fig. 7  Time-sequence changes of lightning activity and echo parameters in the investigated cell during 0000-0400 BT on 7 May 2017 (data processed by five-point moving average, dashed black lines indicate heights of 0, -10, -20, -30℃ and -40℃ isotherms, which provided by Qingyuan sounding at 2000 BT 6 May 2017)

    (a)total flash frequency versus 30 dBZ radar echo top height, (b)total flash frequency versus volumes of regions with radar echoes above 20 dBZ in different height ranges (V0, V-10, V-15, V-20 and Vall represent 0, -10, -15, -20℃ layer and the cell, respectively), (c)average height of LPDE versus 20 dBZ radar echo top height, (d)average height of LPDE versus volumes of regions with radar echoes above 30 dBZ in different height ranges

    Fig. 8  Time-sequence changes of lightning frequency and precipitation characteristics in the investigated cell during 0000-0400 BT on 7 May 2017 (data processed by five-point moving average)

    (a)total flash frequency versus maximum precipitation intensity, (b)total flash frequency and rainfall quantity in the regions where the rain rate greater than 2 mm·h-1 and 20 mm·h-1, respectively

  • [1]
    Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms.J Atms Sci, 1978, 35(8):1536-1548.
    [2]
    王飞, 董万胜, 张义军, 等.云内大粒子对闪电活动影响的个例模拟.应用气象学报, 2009, 20(5):564-570. http://qikan.camscma.cn/jamsweb/article/id/20090507
    [3]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. http://qikan.camscma.cn/jamsweb/article/id/200606130
    [4]
    Zheng D, MacGorman D R.Characteristics of flash initiations in a supercell cluster with tornadoes.Atmos Res, 2016, 167:249-264.
    [5]
    Mecikalski R M, Carey L D.Radar reflectivity and altitude distributions of lightning flashes as a function of three main storm types.J Geophys Res Atmos, 2018, 123(22):12814-12828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2018JD029238
    [6]
    Wang C, Zheng D, Zhang Y, et al.Relationship between lightning activity and vertical airflow characteristics in thunderstorms.Atmos Res, 2017, 191:12-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28c1184334b3055e7cb41d864efd1820
    [7]
    Wang F, Zhang Y, Zheng D, et al.Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm.Acta Meteor Sinica, 2015, 29(2):328-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e201502014
    [8]
    王飞, 张义军, 赵均壮, 等.雷达资料在孤立单体雷电预警中的初步应用.应用气象学报, 2008, 19(2):153-160. http://qikan.camscma.cn/jamsweb/article/id/20080228
    [9]
    Carey L D, Petersen W A, Rutledge S A.Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998.Mon Wea Rev, 2003, 131(8):1811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cae24d5e34f79ddfd13d97abbff365b
    [10]
    孟青, 樊鹏磊, 郑栋, 等.青藏高原那曲地区地闪与雷达参量关系.应用气象学报, 2018, 29(5):524-533. doi:  10.11898/1001-7313.20180502
    [11]
    王艳, 郑栋, 张义军.2000-2007年登陆台风中闪电活动与降水特征.应用气象学报, 2011, 22(3):321-328. http://qikan.camscma.cn/jamsweb/article/id/20110308
    [12]
    郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. http://qikan.camscma.cn/jamsweb/article/id/20100304
    [13]
    王婷波, 郑栋, 周康辉, 等.暴雨和雹暴个例中闪电特征对比.应用气象学报, 2017, 28(5):568-578. doi:  10.11898/1001-7313.20170505
    [14]
    王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. http://qikan.camscma.cn/jamsweb/article/id/20140104
    [15]
    冯桂力, 郄秀书, 袁铁, 等.雹暴的闪电活动特征与降水结构研究.中国科学(D辑), 2007, 37(1):123-132. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200701014
    [16]
    Zheng D, Zhang Y, Meng Q, et al.Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h.Atmos Res, 2010, 97(1/2):241-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a76ecb103e5beee8fab96e3214815
    [17]
    Shi D D, Zheng D, Zhang Y, et al.Low-frequency E-field Detection Array (LFEDA)-Construction and preliminary results.Sci China Earth Sci, 2017, 60(10):1896-1908.
    [18]
    Fan X P, Zhang Y J, Zheng D, et al.A new method of three-dimensional location for low-frequency electric field detection array.J Geophys Res Atmos, 2018, 123(16):8792-8812. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1045389X9300400102
    [19]
    Zheng D, Shi D, Zhang Y, et al.Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions.J Geophys Res Atmos, 2019, 124(14):8025-8042. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2019JD030300
    [20]
    MacGorman D R, Rust W D, Schuur T J, et al.TELEX the thunderstorm electrification and lightning experiment.Bull Amer Meteor Soc, 2008, 89(7):997-1014.
    [21]
    Wu C, Liu L, Wei M, et al.Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China.Adv Atmos Sci, 2018, 35(3):296-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz-e201803006
    [22]
    Park H S, Ryzhkov A V, Zrni c' D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea Forecasting, 2009, 24(3):730-748.
    [23]
    Chen H, Chandrasekar V, Bechini R.An improved dual-polarization radar rainfall algorithm (DROPS2.0):Application in NASA IFloodS field campaign.J Hydrometeorol, 2017, 18(4):917-937.
    [24]
    傅佩玲, 胡东明, 张羽, 等.2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析.气象, 2018, 44(4):500-510. http://d.old.wanfangdata.com.cn/Periodical/qx201804003
    [25]
    田付友, 郑永光, 张小玲, 等.2017年5月7日广州极端强降水对流系统结构, 触发和维持机制.气象, 2018, 44(4):469-484. http://d.old.wanfangdata.com.cn/Periodical/qx201804001
    [26]
    徐珺, 毕宝贵, 谌芸, 等."5.7"广州局地突发特大暴雨中尺度特征及成因分析.气象学报, 2018, 76(4):511-524. http://d.old.wanfangdata.com.cn/Periodical/qxxb201804002
    [27]
    曾智琳, 谌芸, 朱克云, 等.2017年"5.7"广州特大暴雨的中尺度特征分析与成因初探.热带气象学报, 2018, 34(6):791-805. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb201806008
    [28]
    Zheng D, Zhang Y, Meng Q, et al.Climatological comparison of small-and large-current cloud-to-ground lightning flashes over southern China.J Climate, 2016, 29(8):2831-2848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=295248d7d913e31a45cb0fa997c2e6b4
    [29]
    Krehbiel P R.The Electrical Structure of Thunderstorms.The Earth's Electrical Environment, 1986:90-113.
    [30]
    Williams E R.The tripole structure of thunderstorms.J Geophys Res Atmos, 1989, 94(D11):13151-13167. http://d.old.wanfangdata.com.cn/Conference/WFHYXW653012
    [31]
    石玉恒, 张义军, 郑栋, 等.北京地区雷暴的雷达回波特征与闪电活动的相关关系.气象, 2012, 38(1):66-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201201007
    [32]
    易笑园, 张义军, 王红艳, 等.线状中尺度对流系统内多个强降水单体的结构演变及闪电活动特征.气象学报, 2013, 71(6):1035-1046. http://d.old.wanfangdata.com.cn/Periodical/qxxb201306004
    [33]
    王婷波.北京地区雷暴闪电活动与降水关系的分类研究.成都: 成都信息工程学院, 2013.
    [34]
    齐鹏程, 郑栋, 张义军, 等.青藏高原闪电和降水气候特征及时空对应关系简.应用气象学报, 2016, 27(4):488-497. doi:  10.11898/1001-7313.20160412
    [35]
    Zheng D, Zhang Y, Meng Q, et al.Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy.Adv Atmos Sci, 2016, 33(3):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz-e201603009
    [36]
    Chang D E, Weinman J A, Morales C A, et al.The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm.Mon Wea Rev, 2001, 129(8):1809-1833.
    [37]
    Soula S, Chauzy S.Some aspects of the correlation between lightning and rain activities in thunderstorms.Atmos Res, 2001, 56:355-373. doi:  10.1016-S0169-8095(00)00086-7/
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (3850) PDF downloads(141) Cited by()
    • Received : 2019-10-26
    • Accepted : 2020-01-09
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint