发展阶段 | 脉冲样本量 | 持续时间 | 平均峰值/A | 脉冲宽度/μs | 平均转移电荷/μC | 整体转移电荷/μC |
PCP | 39 | 650 ms | 26.8 | 3.0 | 21.0 | 824 |
IPCP | 18 | 400 μs | 23.9 | 4.9 | 41.3 | 743 |
Citation: | Zhang Yang, Chen Zefang, Wang Jingxuan, et al. Observation of the whole discharge process during a multi-stroke triggered lightning by continuous interferometer. J Appl Meteor Sci, 2020, 31(2): 197-212. DOI: 10.11898/1001-7313.20200207. |
Fig. 2 Radiation sources distribution, channel-base current and electric field change waveform during the whole triggered lightning (colors of radiation sources corresponding to time)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Fig. 4 Radiation sources distribution, channel-base current and electric field change waveform during ICC stage (colors of radiation sources corresponding to time)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Fig. 5 Radiation sources distribution, channel-base current and electric field change waveform during 1002-1004 ms (colors of radiation sources corresponding to time)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Fig. 6 Radiation sources distribution, channel-base current and electric field change waveform during 1004-1015 ms (colors of radiation sources corresponding to time)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Fig. 7 Radiation sources distribution, channel-base current and electric field change waveform during a M discharge (colors of radiation sources corresponding to time)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Fig. 8 Radiation sources distribution, channel-base current and electric field change waveform during M discharge during 1285-1305 ms (colors of radiation sources corresponding to time)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Fig. 9 Radiation sources distribution, channel-base current and electric field change waveform during the 1st RS and the 2nd RS (colors of radiation sources corresponding to time, arrows to RS1 and RS2 represent development paths before the first return stroke and the second return stroke)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Fig. 10 Radiation sources distribution, channel-base current and electric field change waveform before the 6th RS (colors of radiation sources corresponding to time)
(a)waveform of slow electric field change, (b)elevation of radiation sources versus time and the corresponding current waveform, (c)hemispherical projection of radiation sources, (d)elevation of radiation sources versus azimuth
Table 1 Current parameters during precursor current pulse stage
发展阶段 | 脉冲样本量 | 持续时间 | 平均峰值/A | 脉冲宽度/μs | 平均转移电荷/μC | 整体转移电荷/μC |
PCP | 39 | 650 ms | 26.8 | 3.0 | 21.0 | 824 |
IPCP | 18 | 400 μs | 23.9 | 4.9 | 41.3 | 743 |
Table 2 Current parameters during return stroke stage
回击次序 | 时间间隔/ms | 峰值/ kA | 转移电荷量/C |
1 | 0 | 10.57 | 0.59 |
2 | 4.5 | 5.66 | 0.48 |
3 | 87.6 | 12.69 | 0.66 |
4 | 30 | 13.73 | 0.66 |
5 | 70 | 13.82 | 0.73 |
6 | 100 | 20.86 | 1.66 |
7 | 90 | 16.55 | 0.90 |
8 | 190 | 36.45 | 5.32 |
平均值 | 71 | 16.29 | 1.37 |
[1] |
武斌, 张广庶, 文军, 等.闪电初始预击穿过程辐射脉冲特征及电流模型.应用气象学报, 2017, 28(5):555-567. doi: 10.11898/1001-7313.20170504
|
[2] |
张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi: 10.3969/j.issn.1001-7313.2006.06.019
|
[3] |
谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):69-77. doi: 10.11898/1001-7313.20150407
|
[4] |
肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi: 10.3969/j.issn.1001-7313.2013.04.007
|
[5] |
谭涌波, 张冬冬, 周博文, 等.地闪近地面形态特征的数值模拟.应用气象学报, 2015, 26(2):211-220. doi: 10.11898/1001-7313.20150209
|
[6] |
张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi: 10.3969/j.issn.1001-7313.2012.05.001
|
[7] |
周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi: 10.3969/j.issn.1001-7313.2014.03.010
|
[8] |
Qie X S, Zhang Y J, Yuan T, et al.A review of atmospheric electricity research in China.Adv Atmos Sci, 2015, 32(2):169-191. doi: 10.1007/s00376-014-0003-z
|
[9] |
Rakov V A, Uman M A, Rambo K J, et al.New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama.J Geophys Res, 1998, 103(D12):14117-14130. doi: 10.1029/97JD02149
|
[10] |
钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi: 10.11898/1001-7313.20160608
|
[11] |
张义军, 吕伟涛, 陈绍东, 等.广东野外雷电综合观测试验十年进展.气象学报, 2016, 74(5):655-671. http://d.old.wanfangdata.com.cn/Periodical/qxxb201605001
|
[12] |
Lu W T, Zhang Y J, Zhou X J, et al.Simultaneous optical and electrical observations on the initial processes of altitude-triggered negative lightning.Atmos Res, 2009, 91(2/4):353-359.
|
[13] |
李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi: 10.3969/j.issn.1001-7313.2010.01.013
|
[14] |
Winn W P, Eastvedt E M, Trueblood J J, et al.Luminous pulses during triggered lightning.J Geophys Res, 2012, 117:D10204. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227153095/
|
[15] |
Edens H E, Eack K B, Eastvedt E M, et al.VHF lightning mapping observations of a triggered lightning flash.Geophys Res Let, 2012, 39(19):L19807.
|
[16] |
Shao X M, Stanley M A, Krehbiel P R, et al.Results of Observations with the New Mexico Tech VHF Interferometer//10th International Conference on Atmospheric Electricity, Soc of Atmos Electr of Jpn, Toyokawa, 1996: 317-320.
|
[17] |
Dong W, Liu X, Yu Y, et al.Broadband interferometer observations of a triggered lightning.Chin Sci Bull, 2001, 46(18):1561-1565. doi: 10.1007/BF02900582
|
[18] |
Sun Z, Qie X, Jiang R, et al.Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation.J Geophys Res Atmos, 2014, 119:13388-13399. doi: 10.1002/2014JD022100
|
[19] |
Stock M G, Akita M, Krehbiel P R, et al.Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm.J Geophys Res Atmos, 2014, 119:3134-3165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ce957f0750878109425a7f7aca55b5a
|
[20] |
Li Y, Qiu S, Shi L, et al.Three-dimensional reconstruction of cloud-to-ground lightning using high-speed video and VHF broadband interferometer.J Geophys Res Atmos, 2017, 122:13420-13435. doi: 10.1002/2017JD027214
|
[21] |
Zhang Y, Krehbiel P R, Zhang Y J, et al.Observations of the initial stage of a rocket-and-wire triggered lightning discharge.Geophys Res Lett, 2017, 44(9):4332-4340. doi: 10.1002/2017GL072843
|
[22] |
Chen Z, Zhang Y, Zheng D, et al.A method of three-dimensional location for LFEDA combining the time of arrival method and the time reversal technique.J Geophys Res Atmos, 2019, 124:6484-6500. doi: 10.1029/2019JD030401
|
[23] |
Zhang Y, Zhang Y J, Zheng D, et al.Characteristics and discharge processes of M events with large current in triggered lightning.Radio Science, 2018, 53(8):974-985. doi: 10.1029/2018RS006552
|
[24] |
Zhang Y, Zhang Y J, Xie M, et al.Characteristics and correlation of return stroke, M component and continuing current for triggered lightning.Electric Power System Research, 2016, 139:10-15. doi: 10.1016/j.epsr.2015.11.024
|
[25] |
William R, Krehbiel P R, Stock M G, et al.Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms.Nature Communications, 2016, 7:10721. doi: 10.1038/ncomms10721
|
[26] |
Shao X M, Krehbiel P R, Thomas R J, et al.Radio interferometric observations of cloud-to-ground lightning phenomena in Florida.J Geophys Res, 1995, 100(D2):2749-2783. doi: 10.1029/94JD01943
|
[27] |
Yoshida S, Biagi C J, Rakov V A, et al.Three-dimensional imaging of upward positive leaders in triggered lightning using VHF broadband digital interferometers.Geophys Res Lett, 2010, 37:L05805. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d12d3932c283cf68cba0ed713759dbc6
|
[28] |
Zheng D, Zhang Y J, Zhang Y, et al.Characteristics of the initial stage and return stroke currents of rocket-triggered lightning flashes in southern China.J Geophys Res Atmos, 2017, 122(12):6431-6452. doi: 10.1002/2016JD026235
|
[29] |
张广庶, 赵玉祥, 郄秀书, 等.利用无线电窄带干涉仪定位系统对地闪全过程的观测与研究.中国科学(D辑), 2008, 38(9):1167-1180. doi: 10.3321/j.issn:1006-9267.2008.09.013
|