Fan Yanfeng, Lu Gaopeng, Zhang Yang, et al. Characteristics of medium-low frequency magnetic fields of initial continuous current in rocket-triggered lightning. J Appl Meteor Sci, 2020, 31(2): 213-223. DOI:  10.11898/1001-7313.20200208.
Citation: Fan Yanfeng, Lu Gaopeng, Zhang Yang, et al. Characteristics of medium-low frequency magnetic fields of initial continuous current in rocket-triggered lightning. J Appl Meteor Sci, 2020, 31(2): 213-223. DOI:  10.11898/1001-7313.20200208.

Characteristics of Medium-low Frequency Magnetic Fields of Initial Continuous Current in Rocket-triggered Lightning

DOI: 10.11898/1001-7313.20200208
  • Received Date: 2019-10-08
  • Rev Recd Date: 2020-01-13
  • Publish Date: 2020-03-31
  • Rocket-triggered lightning experiment conducted in Field Experiment Base on Lightning Sciences, China Meteorological Administration (CMA_FEBLS) provides a good opportunity to study the discharge process and its related electromagnetic effects. During the experiment, two medium-low frequency magnetic antennas are deployed at different distances from the rocket launch site, named close antenna (about 80 m) and far antenna (about 1.9 km), respectively, and magnetic fields are observed with high sensitivity by two antennas. Combined with the synchronous channel-base current and fast electric fields, electromagnetic characteristics of initial continuous current are analyzed. Benefitting from the expansion of the bandwidth of the antenna, magnetic pulse signals can be observed throughout the triggered lightning, including the initial magnetic pulse (IMP), magnetic pulse of the signal quiet period, the magnetic pulse burst (MPB) and the regular magnetic pulse (RMP). IMPs can be divided into two categories (i.e., impulsive and ripple pulses) according to the discernibility of separation between individual pulses. Impulsive pulses are well simulated by the transmission-line model, which suggests that these pulses are generated by leader current pulses propagating downward along the steel wire. Magnetic pulses of the signal quiet period are observed for the first time. The mean pulse width and inter-pulse interval of these pulses are about 1 μs and 14 μs, respectively, which indicates that the propagation of upward leaders during the stage is in the form of small-scale breakdown. The MPB can be observed by both close and far antennas, and the mean inter-pulse interval of the MPB(24.5 μs) is larger than that of the signal quiet period pulse. Furthermore, the channel-base current during the stage of MPB increases to dozens of hundreds of amperes, so it can be concluded that the electric field condition is conductive to the development of the upward leaders. In addition, the magnetic signal recorded at close distance indicates the physical process leading to initial continuous current pulse (ICCP), M-component as well as the direct measurement of current enhancement at the channel base, due to the charge transfer in the ICCP or M-component. Magnetic antennas can also record the regular magnetic pulses (RMPs) that are attributed to the interception of recoil leader with existing lightning channel. Inter-pulse intervals of RMPs are one order smaller than that of MPBs and IMPs, and observations may reflect differences between the positive polarity breakdown and the negative polarity breakdown of leaders.
  • Fig. 1  Frequency response of the magnetic sensor from the laboratory calibration

    Fig. 2  Observations of the triggered lightning at 100601 UTC 17 Jul 2019

    (a)channel-base current, (b)magnetic field of close site, (c)magnetic field of far site, (d)fast electric field of close site

    Fig. 3  Observations of the very initial stage and signal quiet period of the triggered lightning at 100601 UTC 7 Jul 2019

    (a)channel-base current, (b)magnetic field of close site, (c)magnetic field of far site, (d)fast electric field of close site

    Fig. 4  Zoomed view of the signal quiet period of the triggered lightning at 100601 UTC 7 Jul 2019

    (a)channel-base current, (b)magnetic field of close site, (c)magnetic field of far site, (d)fast electric field of close site

    Fig. 5  Observations of the initial continuous current stage of the triggered lightning at 100601 UTC 7 Jul 2019

    (a)channel-base current, (b)magnetic field of close site, (c)magnetic field of far site, (d)fast electric field of close site

    Fig. 6  Comparison of the magnetic pulse burst of the triggered lightning at 100601 UTC 7 Jul 7 2019

    (a)magnetic field of close site, (b)magnetic field of far site

    Fig. 7  Observations of ICCP and M-component of the triggered lightning at 100601 UTC 7 Jul 2019

    (a)channel-base current for ICCP, (b)magnetic field of close site for ICCP, (c)magnetic field of far site for ICCP, (d)electric field of close site for ICCP, (e)channel-base current for M-component, (f)magnetic field of close site for M-component, (g)magnetic field of far site for M-component, (h)electric field of close site for M-component

    Fig. 8  Observations of regular magnetic pulses of the triggered lightning at 100601 UTC 7 Jul 2019

    (a)B-field of close site for ICCP, (b)magnetic field of far site for ICCP, (c)magnetic field of close site for M-component, (d)B-field of far site for M-component

  • [1]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.3969/j.issn.1001-7313.2006.06.019
    [2]
    张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001
    [3]
    Zheng D, Zhang Y, Lu W, et al.Characteristics of return stroke currents of classical and altitude triggered lightning in GCOELD in China.Atmos Res, 2013, 129/130:67-78. doi:  10.1016/j.atmosres.2012.11.009
    [4]
    Zhang Y, Yang S, Lu W, et al.Experiments of artificially triggered lightning and its application in Conghua, Guangdong, China.Atmos Res, 2014, 135/136:330-343. doi:  10.1016/j.atmosres.2013.02.010
    [5]
    Fieux R P, Gary C H, Hubert P.Artificially triggered lightning above land.Nature, 1975, 257:212-214. doi:  10.1038/257212a0
    [6]
    Fisher R J, Schnetzer G H, Thottappillil R, et al.Parameters of triggered-lightning flashes in Florida and Alabama.J Geophy Res, 1993, 98:22887-22902. doi:  10.1029/93JD02293
    [7]
    Lalande P, Bondiou-Clergerie A, Laroche P, et al.Leader properties determined with triggered lightning techniques.J Geophys Res, 1998, 103(D12):14109-14115. doi:  10.1029/97JD02492
    [8]
    李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.3969/j.issn.1001-7313.2010.01.013
    [9]
    钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi:  10.11898/1001-7313.20160608
    [10]
    Hubert P, Laroche P, Eybert-Berard A, et al.Triggered lightning in New Mexico.J Geophys Res, 1984, 89:2511-2521. doi:  10.1029/JD089iD02p02511
    [11]
    Wang D, Rakov V A, Uman M A, et al.Characterization of the initial stage of negative rocket-triggered lightning.J Geophys Res, 1999, 104(D4):4213-4222. doi:  10.1029/1998JD200087
    [12]
    Qie X, Jiang R, Yang J.Characteristics of current pulses in rocket-triggered lightning.Atmos Res, 2014, 135/136:322-329. doi:  10.1016/j.atmosres.2012.11.012
    [13]
    肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi:  10.3969/j.issn.1001-7313.2013.04.007
    [14]
    周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi:  10.3969/j.issn.1001-7313.2014.03.010
    [15]
    谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):451-459. doi:  10.11898/1001-7313.20150407
    [16]
    Rakov V A, Uman M A, Rambo K J, et al.New insights into lightning processes gained from triggered-lightning experiments in Florida and Alabama.J Geophys Res, 1998, 103(D12):14117-14130. doi:  10.1029/97JD02149
    [17]
    Rakov V A, Crawford D E, Kodali V, et al.Cutoff and reestablishment of current in rocket-triggered lightning.J Geophys Res, 2003, 108(D23), ACL13-1.
    [18]
    Lu G, Zhang H, Jiang R, et al.Characterization of initial current pulses in negative rocket-triggered lightning with sensitive magnetic sensor.Radio Science, 2016, 51:1432-1444. doi:  10.1002/2016RS005945
    [19]
    樊艳峰, 陆高鹏, 张鸿波, 等.人工触发闪电实验中初始电流脉冲辐射磁场的观测与模拟.高电压技术, 2017, 43(3):987-993. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201703041
    [20]
    Fan Y, Lu G, Jiang R, et al.Characteristics of electromagnetic signals during the initial stage of negative rocket-triggered lightning.J Geophys Res Atmos, 2018, 123:11625-11636. doi:  10.1029/2018JD028744
    [21]
    樊艳峰, 陆高鹏, 蒋如斌, 等.利用低频磁场天线遥感测量人工引雷中的初始连续电流.大气科学, 2017, 41(5):1027-1036. http://d.old.wanfangdata.com.cn/Periodical/daqikx201705010
    [22]
    Lu G, Fan Y, Zhang H, et al.Measurement of continuing charge transfer in rocket-triggered lightning with low-frequency magnetic sensor at close range.J Atmos Solar-Terr Phy, 2018, 175:76-86. doi:  10.1016/j.jastp.2018.02.010
    [23]
    Lu G, Jiang R, Qie X, et al.Burst of intracloud current pulses during the initial continuous current in a rocket-triggered lightning flash.Geophys Res Lett, 2014, 41(24):9174-9181. doi:  10.1002/2014GL062127
    [24]
    郑天雪, 陆高鹏, 谭涌波, 等.人工引雷上行正先导传播过程中爆发式磁场脉冲极性反转现象的观测与分析.大气科学, 2018, 42(1):124-133. http://d.old.wanfangdata.com.cn/Periodical/daqikx201801009
    [25]
    Shao X, Rhodes C T, Holden D N.RF radiation observations of positive cloud-to-ground flashes.J Geophys Res, 1999, 104(D8):9601-9608. doi:  10.1029/1999JD900036
    [26]
    Rakov V A.Some inferences on the propagation mechanisms of dart leaders and return strokes.J Geophys Res, 1998, 103(D2):1879-1887. doi:  10.1029/97JD03116
    [27]
    Sun Z, Qie X, Jiang R, et al.Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation.J Geophys Res Atmos, 2014, 119:13388-13399. doi:  10.1002/2014JD022100
    [28]
    Zhang Y, Krehbiel P R, Zhang Y, et al.Observations of the initial stage of a rocket-and-wire-triggered lightning discharge.Geophys Res Lett, 2017, 44:4332-4340. doi:  10.1002/2017GL072843
    [29]
    Cooray V, Lundquist S.On the characteristics of some radiation fields from lightning and their possible origin in positive ground flashes.J Geophys Res, 1982, 87(C13):11203-11214. doi:  10.1029/JC087iC13p11203
    [30]
    Jiang R, Qie X, Wang C, et al.Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning.Atmos Res, 2013, 129/130:90-96. doi:  10.1016/j.atmosres.2012.09.005
    [31]
    Ogawa T, Brook M.The mechanism of the intracloud lightning discharge.J Geophys Res, 1964, 69(24):5141-5150. doi:  10.1029/JZ069i024p05141
    [32]
    Mazur V, Ruhnke L H, Warner T A, et al.Recoil leader formation and development.J Electrostat, 2013, 71(4):763-768. doi:  10.1016/j.elstat.2013.05.001
    [33]
    刘恒毅, 董万胜, 张义军.云闪K过程的三维时空特征.应用气象学报, 2017, 28(6):62-75. doi:  10.11898/1001-7313.20170606
    [34]
    Krider E P, Radda G J, Noggle R C.Regular radiation field pulses produced by intracloud lightning discharges.J Geophys Res, 1975, 80(27):3801-3804. doi:  10.1029/JC080i027p03801
    [35]
    李婵, 张阳, 吕伟涛, 等.地闪不规则先导的多尺度熵特征.应用气象学报, 2014, 25(3):347-353. doi:  10.3969/j.issn.1001-7313.2014.03.012
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (4100) PDF downloads(1529) Cited by()
    • Received : 2019-10-08
    • Accepted : 2020-01-13
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint